
Polyspace® Bug Finder™ Access™
User’s Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Access™ User's Guide
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 2.0 (R2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Interpret Polyspace Bug Finder Results
1

Interpret Polyspace Bug Finder Access Results 1-2
Interpret Result Details Message . 1-3
Find Root Cause of Result . 1-5

Investigate the Cause of Empty Results List 1-9

Dashboard . 1-11

Code Metrics Dashboard . 1-14

Quality Objectives Dashboard . 1-17

Results List . 1-19

Source Code . 1-22
Tooltips . 1-22
Examine Source Code . 1-23
Expand Macros . 1-25
View Code Block . 1-26

Result Details . 1-27

Call Hierarchy . 1-29

Track Issue in Bug Tracking Tool . 1-32

Bug Finder Quality Objective Levels . 1-33

Software Quality Objective Subsets (C:2004) 1-38
Rules in SQO-Subset1 . 1-38
Rules in SQO-Subset2 . 1-39

iii

Contents

Software Quality Objective Subsets (AC AGC) 1-44
Rules in SQO-Subset1 . 1-44
Rules in SQO-Subset2 . 1-45

Software Quality Objective Subsets (C:2012) 1-48
Guidelines in SQO-Subset1 . 1-48
Guidelines in SQO-Subset2 . 1-49

Avoid Violations of MISRA C 2012 Rules 8.x 1-53

Software Quality Objective Subsets (C++) 1-57
SQO Subset 1 – Direct Impact on Selectivity 1-57
SQO Subset 2 – Indirect Impact on Selectivity 1-59

Coding Rule Subsets Checked Early in Analysis 1-64
MISRA C: 2004 and MISRA AC AGC Rules 1-64
MISRA C: 2012 Rules . 1-74

HIS Code Complexity Metrics . 1-84
Project . 1-84
File . 1-84
Function . 1-84

Fix or Comment Polyspace Results
2

Address Polyspace Results Through Bug Fixes or Comments
. 2-2

Comment in Result Details pane . 2-3
Comment or Annotate in Code . 2-3

Annotate Code and Hide Known or Acceptable Results 2-5
Code Annotation Syntax . 2-5
Syntax Examples . 2-9

Short Names of Bug Finder Defect Checkers 2-12

Short Names of Code Complexity Metrics 2-29
Project Metrics . 2-29
File Metrics . 2-29

iv Contents

Function Metrics . 2-30

Annotate Code for Known or Acceptable Results (Not
Recommended) . 2-32

Add Annotations Manually . 2-32

Define Custom Annotation Format . 2-37
Define Annotation Syntax Format . 2-39
Map Your Annotation to the Polyspace Annotation Syntax . . . 2-44

Annotation Description Full XML Template 2-46
Example . 2-50

Manage Results
3

Filter and Sort Results . 3-2
Filter Results . 3-4

Classification of Defects by Impact . 3-7
High Impact Defects . 3-8
Medium Impact Defects . 3-10
Low Impact Defects . 3-15

Bug Finder Defect Groups . 3-19
Concurrency . 3-19
Cryptography . 3-20
Data flow . 3-20
Dynamic Memory . 3-21
Good Practice . 3-21
Numerical . 3-21
Object Oriented . 3-22
Programming . 3-22
Resource Management . 3-22
Static Memory . 3-23
Security . 3-23
Tainted data . 3-23

v

Coding Rule Sets and Concepts
4

Polyspace MISRA C 2004 and MISRA AC AGC Checkers 4-2

MISRA C:2004 and MISRA AC AGC Coding Rules 4-3
Supported MISRA C:2004 and MISRA AC AGC Rules 4-3
Troubleshooting . 4-3
List of Supported Coding Rules . 4-4
Unsupported MISRA C:2004 and MISRA AC AGC Rules 4-47

Polyspace MISRA C:2012 Checkers . 4-50

Essential Types in MISRA C: 2012 Rules 10.x 4-52
Categories of Essential Types . 4-52
How MISRA C: 2012 Uses Essential Types 4-52

Unsupported MISRA C:2012 Guidelines 4-55

Polyspace MISRA C++ Checkers . 4-56

Unsupported MISRA C++ Coding Rules 4-57
Language Independent Issues . 4-57
General . 4-58
Lexical Conventions . 4-58
Expressions . 4-59
Declarations . 4-59
Classes . 4-60
Templates . 4-60
Exception Handling . 4-60
Library Introduction . 4-61

Polyspace JSF C++ Checkers . 4-62

JSF C++ Coding Rules . 4-63
Supported JSF C++ Coding Rules . 4-63
Unsupported JSF++ Rules . 4-86

vi Contents

Approximations Used During Bug Finder Analysis
5

Inputs in Polyspace Bug Finder . 5-2

Global Variables in Polyspace Bug Finder 5-3

vii

Interpret Polyspace Bug Finder
Results

• “Interpret Polyspace Bug Finder Access Results” on page 1-2
• “Investigate the Cause of Empty Results List” on page 1-9
• “Dashboard” on page 1-11
• “Code Metrics Dashboard” on page 1-14
• “Quality Objectives Dashboard” on page 1-17
• “Results List” on page 1-19
• “Source Code” on page 1-22
• “Result Details” on page 1-27
• “Call Hierarchy” on page 1-29
• “Track Issue in Bug Tracking Tool” on page 1-32
• “Bug Finder Quality Objective Levels” on page 1-33
• “Software Quality Objective Subsets (C:2004)” on page 1-38
• “Software Quality Objective Subsets (AC AGC)” on page 1-44
• “Software Quality Objective Subsets (C:2012)” on page 1-48
• “Avoid Violations of MISRA C 2012 Rules 8.x” on page 1-53
• “Software Quality Objective Subsets (C++)” on page 1-57
• “Coding Rule Subsets Checked Early in Analysis” on page 1-64
• “HIS Code Complexity Metrics” on page 1-84

1

Interpret Polyspace Bug Finder Access Results
When you open the results of a Bug Finder analysis in the REVIEW view of Polyspace
Access, you see a list on the Results List pane. The results consist of defects, coding rule
violations or code metrics.

You can first narrow down the focus of your review:

• Use filters in the toolstrip to narrow down the list. For instance, you can focus on the
high-impact defects.

• Click the a column header in the Results List to sort the list according to the content
of that column. For instance you can sort by Group or by File.

Once you narrow down and sort the list, you can begin reviewing individual results. This
topic describes how to review a result.

1 Interpret Polyspace Bug Finder Results

1-2

To begin your review, select a result in the list.

Interpret Result Details Message

 Interpret Polyspace Bug Finder Access Results

1-3

Interpret Message

The first step is to understand what is wrong. Read the message on the Result Details
pane and the related line of code on the Source Code pane.

Seek Additional Resources for Help

Sometimes, you need additional help for certain results. Click the icon to open a help
page for the selected result. See code examples illustrating the result. Check external

1 Interpret Polyspace Bug Finder Results

1-4

standards such as CERT-C that provide additional rationale for fixing the issue. When
available, click the icon to see fix suggestions for the defect.

At this point, you might be ready to decide whether to fix the issue or not. Once you
identify a fix, it might help to review all results of that type together.

Find Root Cause of Result
Sometimes, the root cause might be far from the actual location where the result is
displayed. For instance, a variable that you read might be non-initialized because the
initialization is not reachable. The defect is shown when you read the variable, but the
root cause is perhaps a previous if or while condition that is always false.

Navigate to Related Events

Typically, the Result Details pane shows one sequence of events that leads to the result.
The Source Code pane also highlights these events.

 Interpret Polyspace Bug Finder Access Results

1-5

In the above event traceback, this sequence is shown:

1 A variable value is declared.
2 The execution path bypasses an if statement. This information might be relevant if

the variable is initialized inside the if block.
3 Location of the current defect: Non-initialized variable

Typically, the traceback shows major points in the control flow: entering or bypassing
conditional statements or loops, entering a function, and so on. For specific defects, the
traceback shows other kinds of events relevant to the defect. For instance, for a
Declaration mismatch defect, the traceback shows the two locations with conflicting
declarations.

1 Interpret Polyspace Bug Finder Results

1-6

Create Your Own Navigation Path

If the event traceback is not available, use other navigation tools to trace your own path
through the code.

Before you begin navigating through pathways in your code, ask the question: What am I
looking for? Based on your answer, choose the appropriate navigation tool. For instance:

• To investigate a Non-initialized variable defect, you might want to make sure that
the variable is not initialized at all. To look for previous instances of the variable, on
the Source Code pane, right-click the variable and select Search For All

 Interpret Polyspace Bug Finder Access Results

1-7

References. This option lists only instances of a specific variable and not other
variables with the same name in other scopes.

• To investigate a violation of MISRA C:2012 Rule 17.7:

The value returned by a function having non-void return type shall be used.

you might want to navigate from a function call to the function definition. Right-click
the function and select Go To Definition.

After you navigate away from the current result, use the icon on the Result Details
pane to come back.

To select a different result from the Source Code pane, Ctrl-click the result or right-
click and select Select Results At This Location. The Results Details pane updates
but the result you select is not highlighted in the Results List pane. Clicking a result in
the Results List updates the Results Details and Source Code panes.

See Also

More About
• “Address Polyspace Results Through Bug Fixes or Comments” on page 2-2
• “Filter and Sort Results” on page 3-2

1 Interpret Polyspace Bug Finder Results

1-8

Investigate the Cause of Empty Results List
When you run an analysis with Polyspace Bug Finder, the Results List pane can be
empty or it can display this message:

No results available for currently selected filters,
or no results available for the selected project.

The message can indicate that your code has no defect or coding rule violation. However,
before you reach this conclusion:

1 Open the Run Log pane by going to Layout > Show/Hide View.
2 Maximize the pane by double-clicking the Run Log tab, then use CTRL-F to check

for the following.

Possible Cause Action to Take
Did all your source
files compile?

In the Run Log pane, search for:

Failed compilation.

If a file does not compile, Bug Finder can return some results,
but only files with no compilation errors are fully analyzed.

Did you include all
your source files in
your project?

In the Run Log pane, search for:

verifying sources ...

Make sure that all the files that you want to analyze are listed
under this message.

 Investigate the Cause of Empty Results List

1-9

Possible Cause Action to Take
Did you configure
your project
correctly?

In the Run Log pane, search for:

• User:

Under this message, verify that the appropriate options are
activated to check for coding standards violations and to
compute code metrics.

• Activated checkers:

Under this message you see a list of all the defects checkers
selected for this analysis.

• -fast-analysis=true

If the fast analysis mode is activated, Bug Finder checks for
only a subset of defects and coding rules.

Are you applying any
filters to the results?

To see which filters you are applying to the results, see the filter
bar below the FAMILY FILTERS section of the toolstrip. To clear
all applied filters, click the eraser icon.

If you review results for an analysis you did not configure, discuss the possible causes of
an empt results list with the project build master. If you use polyspace-configure as
part of your analysis workflow, the Run Log might not contain all the analysis
configuration parameters. For more information on analysis options and project
configuration, see the documentation for Polyspace Bug Finder or Polyspace Bug Finder
Server™.

See Also

More About
• “Address Polyspace Results Through Bug Fixes or Comments” on page 2-2

1 Interpret Polyspace Bug Finder Results

1-10

Dashboard
The Dashboard perspective provides an overview of the analysis results in graphical
format, with clickable fields that let you drill down into your findings by project, file, or
category.

When you upload an analysis run to the Polyspace Access database, the DASHBOARD
updates to display the statistics for the latest run.

 Dashboard

1-11

1 Interpret Polyspace Bug Finder Results

1-12

In this perspective, you can open additional dashboards to get a snapshot of the quality of
your code. You can see a project overview, or an overview for a family of findings. You can
also see an aggregate of statistics for multiple projects under the same folder.

You can also perform the following actions on this pane:

• Select elements on the graphs to filter results from the Results List pane. See “Filter
and Sort Results” on page 3-2.

• Open the current project findings in the Polyspace desktop interface.
• Manage projects and user authorizations. See “Manage Project Permissions”.

 Dashboard

1-13

Code Metrics Dashboard
To view the code complexity metrics that Polyspace computes, use the Code Metrics
dashboard. See “Code Metrics”. Only when you use the option Calculate code
metrics (-code-metrics) doesPolyspace compute the code complexity metrics
during analysis. For more information on analysis options, see the documentation for
Polyspace Bug Finder or Polyspace Bug Finder Server.

In the PROJECT EXPLORER, select a project. Use the Code Metrics card in the
Project Overview dashboard to get a quick overview of these code metrics:

• Number of Files
• Number of Lines Without Comment
• Cyclomatic Complexity

If you select a folder in the PROJECT EXPLORER, you see the number of Sub-
project(s) in that folder and an aggregate of the metrics for all the subprojects.

To open the Code Metrics dashboard, click the Code Metrics icon in the DASHBOARD
section of the toolstrip. Or, click Code Metrics on the card in the Project Overview
dashboard.

1 Interpret Polyspace Bug Finder Results

1-14

In the Summary section, you see trend charts of the Number of lines Without
Comment and Number of Files for the project.

 Code Metrics Dashboard

1-15

The other sections of the dashboard display tables with the computed value or range of
the different project, file, and function metrics. When applicable, the table shows the
predefined threshold and pass/fail status for the corresponding code metric. For a list of
code complexity metrics thresholds, see “HIS Code Complexity Metrics” on page 1-84. If
you select a folder in the PROJECT EXPLORER, the tables in the Code Metrics
dashboard do not show the threshold or pass/fail status. The value or range of the metrics
are aggregate of all subprojects in the selected folder. To drill down to a project from this
aggregate view, expand a table row and click the project name.

To improve your code quality, use the pass/fail status to identify and lower metrics values
that exceeds a threshold. For instance, if the Number of Called Functions range
exceeds the predefined threshold, click the range in the Min..Max column to open the
Results List for the computed Number of Called Functions metric. Review the results
that exceed the metric threshold. If several of those functions are always called together,
you can write one function that fuses the bodies of those functions. Call that one function
instead of the group of functions that are called together.

1 Interpret Polyspace Bug Finder Results

1-16

Quality Objectives Dashboard
The Quality Objectives dashboard is available only for Code Prover analysis results.

To monitor the quality of your code against predefined “Software Quality Objectives”
(Polyspace Code Prover Access), use the Quality Objectives dashboard.

In the Project Overview dashboard, use the Quality Objectives card to get a quick
overview of your progress in achieving a quality objective threshold. From the Threshold
drop-down list, select a threshold and view the percentage of findings that you have
already addressed to achieve the threshold. The card also displays the number of findings
you still need to address to reach the threshold. Click this number to open the REVIEW
perspective and see these findings in the Results List.

For a more comprehensive view, open the Quality Objectives dashboard. In the
Summary section you can use the Threshold drop-down list to pick a threshold and see
the remaining open issues, with a breakdown per category, such as code metrics or
coding rules.

In this Quality Objectives dashboard, 94% of the findings required to achieve threshold
SQO2 have been addressed. There are 24 open issues, including 12 Code Metrics, 8
Coding Rules, and 4 Systematic issues. Open issues are issues with a review status of
Unreviewed, To fix, To investigate, or Other.

 Quality Objectives Dashboard

1-17

The table shows the current progress of code quality for all quality objective thresholds.
To view the Results List for a set of open issues, click the corresponding value in the
table.

See Also

More About
• “Software Quality Objectives” (Polyspace Code Prover Access)

1 Interpret Polyspace Bug Finder Results

1-18

Results List
The Results List pane lists all results along with their attributes.

For each result, the Results List pane contains the result attributes, listed in columns:

Attribute Description
Family Group to which the result belongs.
ID Unique identification number of the result.
Type Defect or coding rule violation.
Group Category of the result, for instance:

• For defects: Groups such as static memory, numerical, control
flow, concurrency, etc.

• For coding rule violations: Groups defined by the coding rule
standard.

For instance, MISRA C®: 2012 defines groups related to code
constructs such as functions, pointers and arrays, etc.

Check Result name, for instance:

• For defects: Defect name
• For coding rule violations: Coding rule number

Information Result sub-type when available.

• For defects: Impact classification.

For coding standards: required or mandatory, rule or
recommendation.

Detail Additional information about a result. The column shows the first
line of the Result Details pane.

For an example of how to use this column, see the result MISRA
C:2012 Dir 1.1.

File File containing the instruction where the result occurs

 Results List

1-19

Attribute Description
Function Function containing the instruction where the result occurs. If

the function is a method of a class, it appears in the format
class_name::function_name.

Status Review status you have assigned to the result. The possible
statuses are:

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Severity Level of severity you have assigned to the result. The possible
levels are:

• Unset
• High
• Medium
• Low

Assigned to User name of reviewer assigned to this result.
Ticket Key When you create a JIRA issue for a result, this field contains the

issue ID. Click the ID to open the issue in the JIRA interface.
Comments Comments you have entered about the result
Folder Path to the folder that contains the source file with the result

To show or hide any of the columns, click the icon in the upper-right of the Results
List pane, then select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results.

1 Interpret Polyspace Bug Finder Results

1-20

• Organize your result review using filters in the toolstrip or in the context menu. For
more information, see “Filter and Sort Results” on page 3-2.

• Right-click a result to get the URL of the result. When you open this URL in a web
browser you get see the Results List pane filtered to that one result.

If the Results List exceeds 10000 findings, Polyspace Access truncates the list and
displays this icon in the filters bar. To show all findings, see the contextual help of the
icon.

The 10000 findings limit is preset and cannot be changed.

 Results List

1-21

Source Code
The Source Code pane shows the source code with the defects colored in red.

Tooltips
Placing your cursor over a result displays a tooltip that provides range information for
variables, operands, function parameters, and return values.

1 Interpret Polyspace Bug Finder Results

1-22

Examine Source Code
On the Source Code pane, if you right-click a text string, the context menu provides
options to examine your code:

 Source Code

1-23

For example, if you right-click the variable, you can use the following options to examine
and navigate through your code:

• Search For All References — List all references in the Code Search pane. The
software supports this feature for global and local variables, functions, types, and
classes.

• Go To Definition — Go to the line of code that contains the definition of i. The
software supports this feature for global and local variables, functions, types, and
classes. If a definition is not available to Polyspace, selecting the option takes you to
the declaration.

• Select Results –– Show more information about the selected result in the Results
Details pane and pin the result in the Source Code pane.

After you navigate away from the current result, use the icon on the Result
Details pane to come back.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click
Enter, the software displays the specified line of code.

1 Interpret Polyspace Bug Finder Results

1-24

To search for instances of your selection in the Current Source File or in All Source
Files, double-click your selection before you right-click.

Expand Macros
You can view the contents of source code macros in the source code view. A code
information bar displays icons that identify source code lines with macros.

When you click this icon, the software displays the contents of macros on the next line.

To display the normal source code again, click the icon again.

Note
1 The Result Details pane also allows you to view the contents of a macro if the check

you select lies within a macro.
2 You cannot expand OSEK API macros in the Source Code pane.

 Source Code

1-25

View Code Block
On the Source Code pane, to highlight a block of code, click either its opening or closing
brace. If the brace itself is highlighted, click the brace twice.

1 Interpret Polyspace Bug Finder Results

1-26

Result Details
The Result Details pane contains comprehensive information about a specific defect. To
see this information, on the Results List pane, select the defect.

• The top right corner shows the file and function containing the defect, in the format
file_name/function_name.

• The yellow box contains the name of the defect with an explanation of why the defect
occurs.

The button allows you to access documentation for the defect. When available,
click the icon to see fix suggestions for the defect.

On this pane, you can also:

• Assign a Severity and Status to each check, and enter comments to describe the
results of your review.

 Result Details

1-27

• Assign a review to the result. When you assign results a reviewer can filter the
Results List to only show results that are assigned to him or her.

• Create a ticket in a bug tracking tool such as JIRA. Once you create the ticket the
Results Details for this defect shows a clickable link to the ticket you created.

• View the event traceback.

The Event column lists the sequence of code instructions causing the defect. The
Scope column lists the function containing the instructions. If the instructions are not
in a function, the column lists the file containing the instructions.

The Variable trace check box allows you to see an additional set of instructions that
are related to the defect.

• Click the icon to open the “Call Hierarchy” on page 1-29.

1 Interpret Polyspace Bug Finder Results

1-28

Call Hierarchy
The Call Hierarchy pane displays the call tree of functions in the source code.

For each function foo, the Call Hierarchy pane lists the functions and tasks that call

foo (callers) and those called by foo (callees). The callers are indicated by . The

callees are indicated by . The Call Hierarchy pane lists direct function calls and
indirect calls through function pointers.

Note In Polyspace Bug Finder Access, you might not see all callers or callees of a
function, especially for calls through function pointers and dead code.

For instance, Polyspace Bug Finder Access does not display the functions registered with
at_exit() and at_quick_exit(), and called by exit() and quick_exit()
respectively.

You open the Call Hierarchy pane by using the icon in your result details. To update
the pane:

• You can click a defect on the Results List or CTRL-click a result in the Source Code
pane. You see the function containing the defect with its callers and callees.

In this example, the Call Hierarchy pane displays the function generic_validation,
and with its callers and callees.

 Call Hierarchy

1-29

Tip To navigate to the call location in the source code, select a caller or callee name

In the Call Hierarchy pane, you can perform these actions:

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and
callees by clicking this button

• Navigate Call Hierarchy

You can navigate the call hierarchy in your source code. For a function, double-click a
caller or callee name to navigate to the caller or callee definition in the source code.

• Determine If Function Is Stubbed

From the Stubbed column, you can determine if a function is stubbed. The entries in
the column show why a function was stubbed.

1 Interpret Polyspace Bug Finder Results

1-30

• Automatic: Polyspace cannot find the function definition. For instance, you did not
provide the file containing the definition.

• Std library: The function is a standard library function. You do not provide the
function definition explicitly in your Polyspace project.

• Mapped to std library: You map the function to a standard library function by
using the option -function-behavior-specifications. For more information
on analysis options, see the documentation for Polyspace Bug Finder or Polyspace
Bug Finder Server.

 Call Hierarchy

1-31

Track Issue in Bug Tracking Tool
If you use JIRA as part of your software development process, you can configure
Polyspace Access to create JIRA issues for Polyspace findings and add those issues to your
JIRA software project. See “Configure the Web Server and Gateway”.

To create a JIRA issue, select a finding and click Create Ticket from the Results Details
pane in Polyspace Access or in the Polyspace desktop interface. In the desktop interface,
you can create a JIRA issue only for results that you open from Polyspace Access.

If you are prompted to log in, use your JIRA credentials.

In the Create JIRA ticket window, select a Project and Issue Type from the drop-down
lists. The Description includes a URL to the Polyspace Access Results List filtered down
to the finding for which you created the JIRA issue.

After you create a JIRA issue, click the link in the Results Details pane to open the issue
in JIRA and track the progress in resolving the issue.

1 Interpret Polyspace Bug Finder Results

1-32

Bug Finder Quality Objective Levels
The Bug Finder Quality Objectives or BF-QOs are a set of thresholds against which you
can compare your Bug Finder analysis results. These objectives are adapted from the
Polyspace Code Prover™ “Software Quality Objectives” (Polyspace Code Prover Access).
You can develop a review process based on the Quality Objectives.

You can use a predefined BF-QO level or define your own. Following are the predefined
quality thresholds specified by each BF-QO.

BF-QO Level 1

Metric Threshold Value
Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a function 1
Language scope, an indicator of the cost of maintaining or
changing functions. Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0
Number of direct recursions 0

 Bug Finder Quality Objective Levels

1-33

Metric Threshold Value
Number of unjustified violations of the following MISRA C:2004
rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

Number of unjustified violations of the following MISRA C:2012
rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

1 Interpret Polyspace Bug Finder Results

1-34

Metric Threshold Value
Number of unjustified violations of the following MISRA® C++
rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1, 6-6-2, 6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6, 15-3-7, 15-4-1, 15-5-1,

15-5-2
• 18-4-1

0

BF-QO Level 2 and 3

In addition to all the requirements of BF-QO Level 1, these levels includes the
following thresholds:

Metric Threshold Value
Number of “High Impact Defects” on page 3-8 0

BF-QO Level 4

In addition to all the requirements of BF-QO Level 2 and 3, this level includes the
following thresholds:

Metric Threshold Value
Number of “Medium Impact Defects” on page 3-10 0

BF-QO Level 5

In addition to all the requirements of BF-QO Level 4, this level includes the
following thresholds:

 Bug Finder Quality Objective Levels

1-35

Metric Threshold Value
Number of unjustified violations of the following MISRA C:2004
rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the following MISRA C:2012
rules:

• 11.8
• 12.1 and 12.3
• 13.2 and 13.4
• 14.4
• 15.6 and 15.7
• 16.4 and 16.5
• 17.4
• 20.4, 20.6, 20.7, 20.9, and 20.11

0

1 Interpret Polyspace Bug Finder Results

1-36

Metric Threshold Value
Number of unjustified violations of the following MISRA C++
rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-0-13, 5-2-1, 5-2-2,

5-2-7, 5-2-11, 5-3-3, 5-2-5, 5-2-6, 5-3-2, 5-18-1
• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

BF-QO Level 6

In addition to all the requirements of BF-QO Level 5, this level includes the
following thresholds:

Metric Threshold Value
Number of “Low Impact Defects” on page 3-15 0

BF-QO Exhaustive

In addition to all the requirements of BF-QO Level 1, this level includes the
following thresholds. The thresholds for coding rule violations apply only if you check for
coding rule violations.

Metric Threshold Value
Number of unjustified MISRA C and MISRA C++ coding rule
violations

0

Number of unjustified defects 0

 Bug Finder Quality Objective Levels

1-37

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 1-38
“Rules in SQO-Subset2” on page 1-39

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not be
used.

13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.

1 Interpret Polyspace Bug Finder Results

1-38

Rule number Description
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function

 Software Quality Objective Subsets (C:2004)

1-39

Rule number Description
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the

nonzero initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used

1 Interpret Polyspace Bug Finder Results

1-40

Rule number Description
12.12 The underlying bit representations of floating-point values shall not

be used.
13.1 Assignment operators shall not be used in expressions that yield

Boolean values
13.2 Tests of a value against zero should be made explicit, unless the

operand is effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or

inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
13.6 Numeric variables being used within a “for” loop for iteration

counting should not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

 Software Quality Objective Subsets (C:2004)

1-41

Rule number Description
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter
shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

1 Interpret Polyspace Bug Finder Results

1-42

See Also

More About
• “Interpret Polyspace Bug Finder Access Results” on page 1-2

 See Also

1-43

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 1-44
“Rules in SQO-Subset2” on page 1-45

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

1 Interpret Polyspace Bug Finder Results

1-44

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

 Software Quality Objective Subsets (AC AGC)

1-45

Rule number Description
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter

shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

1 Interpret Polyspace Bug Finder Results

1-46

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

See Also

More About
• “Interpret Polyspace Bug Finder Access Results” on page 1-2

 See Also

1-47

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 1-48
“Guidelines in SQO-Subset2” on page 1-49

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can
select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of
unproven results in Polyspace Code Prover.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type

1 Interpret Polyspace Bug Finder Results

1-48

Rule Description
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified

 Software Quality Objective Subsets (C:2012)

1-49

Rule Description
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type

pointed to by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end

1 Interpret Polyspace Bug Finder Results

1-50

Rule Description
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a

switch statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

 Software Quality Objective Subsets (C:2012)

1-51

See Also

More About
• “Interpret Polyspace Bug Finder Access Results” on page 1-2

1 Interpret Polyspace Bug Finder Results

1-52

Avoid Violations of MISRA C 2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and
definitions. If you follow these practices, you are less likely to have conflicting
declarations or to unintentionally modify variables.

If you do not follow these practices during coding, your code might require major changes
later to be MISRA C-compliant. You might have too many MISRA C violations. Sometimes,
in fixing a violation, you might violate another rule. Instead, keep these rules in mind
when coding. Use the MISRA C:2012 checker to spot any issues that you might have
missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or

function once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include
the header file in all the source files where you need the object. In one of those source
files, define the object. For instance:

 Avoid Violations of MISRA C 2012 Rules 8.x

1-53

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header
file in all the source files where you need the function. In one of those source files,
define the function.

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4,
MISRA C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the
object or function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For
instance, this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violateMISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.8.

• If you want to use an object in one function only, declare the object in the
function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

1 Interpret Polyspace Bug Finder Results

1-54

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.9.

• If you want to inline a function, declare and define the function with the
static specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10.
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit
specifications.

Avoid mixing implicit and explicit specifications. You can specify the first enumeration
constant explicitly, but after that, use either implicit or explicit specifications. For
instance, avoid this type of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.

 Avoid Violations of MISRA C 2012 Rules 8.x

1-55

• When declaring pointers, point to a const-qualified type unless you want to
use the pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for
modifying the pointed object. For instance, in this example, ptr is not used to modify
the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

1 Interpret Polyspace Bug Finder Results

1-56

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 1-57
“SQO Subset 2 – Indirect Impact on Selectivity” on page 1-59

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the number of
unproven results in Polyspace Code Prover.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an

outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.

 Software Quality Objective Subsets (C++)

1-57

MISRA C++ Rule Description
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

1 Interpret Polyspace Bug Finder Results

1-58

MISRA C++ Rule Description
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of
the same function (in other translation units) shall be declared with the same
set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the
number of unproven results in Polyspace Code Prover. The following set of coding rules
may help to address design issues in your code. The SQO-subset2 option checks the
rules in SQO-subset1 and SQO-subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in

an outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the

static storage class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that

minimizes its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

 Software Quality Objective Subsets (C++)

1-59

MISRA C++ Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the
equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration- statement
shall have type bool

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where

they point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.

1 Interpret Polyspace Bug Finder Results

1-60

MISRA C++ Rule Description
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.

 Software Quality Objective Subsets (C++)

1-61

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit

return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.

1 Interpret Polyspace Bug Finder Results

1-62

MISRA C++ Rule Description
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

See Also

More About
• “Interpret Polyspace Bug Finder Access Results” on page 1-2

 See Also

1-63

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that
do not require the run-time error detection part of the analysis. If you want only those
rules checked, you can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the
analysis. The subsets are available with the options Check MISRA C:2004 (-misra2),
Check MISRA AC AGC (-misra-ac-agc), and Check MISRA C:2012 (-misra3).
For more on analysis options, see the documentation of Polyspace Bug Finder or
Polyspace Bug Finder Server.

Argument Purpose
single-unit-
rules

Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a
Bug Finder analysis stops after the compilation phase.

system-
decidable-rules

Check rules in the single-unit-rules subset and some rules
that apply to the collective set of program files. The additional rules
are the less complex rules that apply at the integration level. These
rules can be checked only at the integration level because the rules
involve more than one translation unit.

If you detect only coding rule violations and select this subset, a
Bug Finder analysis stops after the linking phase.

See also “Interpret Polyspace Bug Finder Access Results” on page 1-2.

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

1 Interpret Polyspace Bug Finder Results

1-64

Environment

Rule Description
1.1* All code shall conform to ISO® 9899:1990 "Programming languages - C",

amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be

used.
4.2 Trigraphs shall not be used.

 Coding Rule Subsets Checked Early in Analysis

1-65

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more

than 31 characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier

in another name space, with the exception of structure and union member
names.

5.7* No identifier name should be reused.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character

values.
6.2 Signed and unsigned char type shall be used only for the storage and use of

numeric values.
6.3 typedefs that indicate size and signedness should be used in place of the

basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be

used.

1 Interpret Polyspace Bug Finder Results

1-66

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible

at both the function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be

explicitly stated.
8.3 For each function parameter the type given in the declaration and definition

shall be identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be

compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.

 Coding Rule Subsets Checked Early in Analysis

1-67

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a

different underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a
different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type
that is narrower and of the same signedness as the underlying type of the
expression.

10.4 The value of a complex expression of float type may only be cast to narrower
floating type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

1 Interpret Polyspace Bug Finder Results

1-68

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a

different pointer to object type.
11.5 A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions.
12.3 The sizeof operator should not be used on expressions that contain side

effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression

 Coding Rule Subsets Checked Early in Analysis

1-69

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean

values.
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used

for loop termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The

else keyword shall be followed by either a compound statement, or another
if statement.

14.10 All if else if constructs should contain a final else clause.

1 Interpret Polyspace Bug Finder Results

1-70

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch

clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.4* The identifiers used in the declaration and definition of a function shall be

identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of

parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

 Coding Rule Subsets Checked Early in Analysis

1-71

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

1 Interpret Polyspace Bug Finder Results

1-72

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors

directives or comments.
19.2 Nonstandard characters should not occur in header file names in #include

directives.
19.3 The #include directive shall be followed by either a <filename> or "filename"

sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined()
operator.

19.12 There shall be at most one occurrence of the # or ## preprocessor operators in
a single macro definition.

19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two

standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file

being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.

 Coding Rule Subsets Checked Early in Analysis

1-73

Rule Description
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if or #ifdef directive to which they are related.

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be

defined, redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be

reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall

not be used.
20.11 The library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

MISRA C: 2012 Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

1 Interpret Polyspace Bug Finder Results

1-74

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and

constraints, and shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

 Coding Rule Subsets Checked Early in Analysis

1-75

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in

an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be

unique.
5.9* Identifiers that define objects or functions with internal linkage should be

unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented

in an unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is

"pointer to const-qualified char".

1 Interpret Polyspace Bug Finder Results

1-76

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type

qualifiers.
8.4 A compatible declaration shall be visible when an object or function with

external linkage is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are

referenced in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects

and functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a

single function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration

constant shall be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of

the array shall be specified explicitly.

 Coding Rule Subsets Checked Early in Analysis

1-77

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in

addition and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are

performed shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential

type.
10.6 The value of a composite expression shall not be assigned to an object with

wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the

usual arithmetic conversions are performed then the other operand shall not
have wider essential type.

10.8 The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.

1 Interpret Polyspace Bug Finder Results

1-78

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any

other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type

and any other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to

a different object type.
11.4 A conversion should not be performed between a pointer to object and an

integer type.
11.5 A conversion should not be performed from pointer to void into pointer to

object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed

to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer

constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-

around.

 Coding Rule Subsets Checked Early in Analysis

1-79

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator

should have no other potential side effects other than that caused by the
increment or decrement operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which

has potential side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression

of an iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block,

or in any block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate

any iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a

compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

1 Interpret Polyspace Bug Finder Results

1-80

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a

switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword

between the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

 Coding Rule Subsets Checked Early in Analysis

1-81

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or

comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur

in a header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename

\" sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument.
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall

evaluate to 0 or 1.
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately

be followed by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself

subject to further macro replacement, shall only be used as an operand to
these operators.

20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if, #ifdef or #ifndef directive to which they are related.

1 Interpret Polyspace Bug Finder Results

1-82

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved

macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be

used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall

not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

See Also

More About
• “Interpret Polyspace Bug Finder Access Results” on page 1-2

 See Also

1-83

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are part
of a standard defined by a major group of Original Equipment Manufacturers or OEMs.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions 0
Number of recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity 10
Language scope 4
Number of call levels 4
Number of calling functions 5
Number of called functions 7
Number of function parameters 5
Number of goto statements 0
Number of instructions 50
Number of paths 80

1 Interpret Polyspace Bug Finder Results

1-84

Metric Recommended Upper Limit
Number of return statements 1

See Also

More About
• “Code Metrics”

 See Also

1-85

Fix or Comment Polyspace Results

• “Address Polyspace Results Through Bug Fixes or Comments” on page 2-2
• “Annotate Code and Hide Known or Acceptable Results” on page 2-5
• “Short Names of Bug Finder Defect Checkers” on page 2-12
• “Short Names of Code Complexity Metrics” on page 2-29
• “Annotate Code for Known or Acceptable Results (Not Recommended)” on page 2-32
• “Define Custom Annotation Format” on page 2-37
• “Annotation Description Full XML Template” on page 2-46

2

Address Polyspace Results Through Bug Fixes or
Comments

Once you understand the root cause of a Polyspace finding, you can fix your code.
Otherwise, add comments to your Polyspace results to fix the code later or to justify the
result. You can use the comments to keep track of your review progress.

If you add comments to your results file, they carry over to the next analysis on the same
project. If you add comments to your code (annotate), they carry over to any subsequent
analysis of the code, whether in the same project or not.

2 Fix or Comment Polyspace Results

2-2

Comment in Result Details pane

Set the Status, Severity, and comment fields in the Result Details pane. The status
indicates your response to the Polyspace result. If you do not plan to fix your code in
response to a result, assign one of the following statuses:

• Justified
• No Action Planned
• Not a Defect

Based on the status, Polyspace considers that you have given due consideration and
justified that result (retained the code despite the result).

Comment or Annotate in Code
If you enter code comments or annotations in a specific syntax, the software can read
them and populate the Severity, Status, and comment fields in the next analysis of the
code. Open your source code in an editor and enter the annotation on the same line as the
result.

 Address Polyspace Results Through Bug Fixes or Comments

2-3

For the annotation syntax, see “Annotate Code and Hide Known or Acceptable Results” on
page 2-5.

If you do not specify a status in your annotation, Polyspace assumes that you have set a
status of No Action Planned.

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-5

2 Fix or Comment Polyspace Results

2-4

Annotate Code and Hide Known or Acceptable Results
To facilitate your review workflow, Polyspace Access classifies analysis findings as To Do,
In Progress, or Done. In the DASHBOARD perspective, open issues are findings that
are To Do or In Progress.

If a Polyspace analysis of your code finds known or acceptable defects or coding rule
violations, you can remove the defects or violations from the list of Open Issues in
subsequent analyses. Add code annotations indicating that you have reviewed the issues
and that you do not intend to fix them.

Add annotations by typing them directly in your code. For the general workflow, see
“Address Polyspace Results Through Bug Fixes or Comments” on page 2-2. This topic
shows the annotation syntax. If you annotate a finding in your code, you cannot edit the
status, severity, or comment fields in the Polyspace Access interface.

Code Annotation Syntax
To add comments directly to your source file, use the Polyspace annotation syntax. The
syntax is not case sensitive, and has this format:

• Annotation for current line of code:

line of code; /* polyspace Family:Result_name */

• Annotation for current line of code and n following lines:

code; /* polyspace +n Family:Result_name */

• Annotation for block of code:

/* polyspace-begin Family:Result_name */
code;
/* polyspace-end Family:Result_name */

Annotations begin with the keyword polyspace and must include Family and
Result_name field values. You can optionally specify Status, Severity, and Comment
field values.

polyspace Family:Result_name [Status:Severity] "Comment"

When you annotate a block of code, if subsequent annotations nested within that block of
code apply to the same Family and Result_name, they are ignored.

 Annotate Code and Hide Known or Acceptable Results

2-5

For example, in this code, the annotation on line 9 is ignored and the block annotation is
applied instead.

1 /*polyspace-begin MISRA-C:14.9 [High:To fix] "Block annotation"*/
2
3 int main(void) /*polyspace MISRA-C:14.7 "Annotation applied"*/
4 {
5 int x = 1;
6 int y = x / 2;
7
8
9 if (x > y) /*polyspace MISRA-C:14.9 "Annotation ignored"*/
1 return x;
11 return x;
12 }
13 /*polyspace-end MISRA-C:14.9 [High:To fix] "Block annotation"*/

If you do not specify a status, Polyspace Access considers the result Done, and assigns
the status No action planned to the result.

To replace the different annotation fields with their allowed values, use the values in this
table or see the examples on page 2-9.

2 Fix or Comment Polyspace Results

2-6

Field Allowed Value
Family Type of analysis result:

• DEFECT (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code Prover)
• CODE-METRICS, for function-level code complexity metrics
• VARIABLE, for global variables (Polyspace Code Prover)
• MISRA-C or MISRA2004 for MISRA C: 2004 rule violations
• MISRA-AC-AGC for violations of MISRA C:2004 rules

applicable to generated code
• MISRA-C3 or MISRA2012 for MISRA C: 2012 rule violations.

The annotation works even for the rules applicable to
generated code.

• CERT-C for CERT® C coding standard violations
• CERT-CPP for CERT C++ coding standard violations
• ISO-17961 for ISO/IEC TS 17961 coding standard violations
• MISRA-CPP for MISRA C++ rule violations
• AUTOSAR-CPP14 for AUTOSAR C++14 rule violations
• JSF for JSF®++ rule violations
• CUSTOM for violations of custom coding rules

To specify all analysis results, use the asterisk character *:*.

 Annotate Code and Hide Known or Acceptable Results

2-7

Field Allowed Value
Result_name For DEFECT, use short names of checkers. See “Short Names of

Bug Finder Defect Checkers” on page 2-12.

For RTE, use short names of run-time checks. See “Short Names
of Code Prover Run-Time Checks” (Polyspace Code Prover
Access).

For CODE-METRICS, use short names of code complexity metrics.
See “Short Names of Code Complexity Metrics” on page 2-29.

For VARIABLE, the only allowed value is the asterisk character " *
".

For coding standard violations, specify the rule number or
numbers.

To specify all parts of a result name [MISRA2012:17.*] or all
result names in a family [DEFECT:*], use the asterisk character.

Status Text to indicate how you intend to address the error in your code.
This value populates the Status column in the Results List pane
as:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Polyspace Access removes results annotated with status
Justified, No action planned, or Not a defect from the
list of Open Issues in subsequent analyses.

2 Fix or Comment Polyspace Results

2-8

Field Allowed Value
Severity Text to indicate how critical you consider the error in your code.

This value populates the Severity column in the Results List
pane as:

• Unset
• High
• Medium
• Low

Comment Additional text, such as a keyword or an explanation for the
status and severity. This value populates the Comment column in
the Results List pane.

Syntax Examples
Annotate a Single Defect

Enter an annotation on the same line as the defect and specify the Family (DEFECT) and
the Result_name (INT_OVFL). When you do not specify a status, Polyspace assigns the
status No action planned and the result is considered Done in subsequent analyses.

int var = INT_MAX;
var++;/* polyspace DEFECT:INT_OVFL */

Annotate a Single Coding Standard Violation

Justify a coding standard violation, for instance, a CERT-C violation.

Enter an annotation on the same line as the violation and specify the Family (CERT-C)
and the Result_name (the rule number, for instance, STR31-C). Assign the status
Justified, severity Low and a comment.

code; /* polyspace CERT-C:STR31-C [Justified:Low] "Overflow cannot happen" */

Annotate All MISRA C: 2012 Violations Over Multiple Lines

Enter an annotation with +n between polyspace and the Family:Result_name entries.
The annotation applies to the same line and the n following lines.

 Annotate Code and Hide Known or Acceptable Results

2-9

This annotation applies to lines 4–7. The line count includes code, comments, and blank
lines.

4. code ; // polyspace +3 MISRA2012:*
5. //comment
6.
7. code;
8. code;

Annotate All Code Metrics on Function

To annotate function-level code complexity metrics, in the function definition, enter an
annotation on the same line as the function name.

This annotation suppresses all code complexity metrics for function func:

char func(char param) { //polyspace CODE-METRICS:*
 ...
}

Specify Multiple Families in the Same Annotation

Enter each family separated by a space. This annotation applies to all MISRA C:2012
rules 17 and to all run-time checks.

some code; /* polyspace MISRA2012:17.* RTE:* */

Specify Multiple Result Names in the Same Annotation

After you specify the Family (DEFECT), enter each Result_name separated by a comma.

system("rm ~/.config"); /* polyspace DEFECT:UNSAFE_SYSTEM_CALL,RETURN_NOT_CHECKED */

Add Explanatory Comments to Annotation

After you specify a Family and a Result_name, you can add a Comment with additional
information for your justification. You can provide a comment for all families and result
names, or a comment for each family or result name.

2 Fix or Comment Polyspace Results

2-10

//Single comment

code; /* polyspace DEFECT:BAD_FREE MISRA2004:* "OK Defect and MISRA" */
//Multiple comments incorrect syntax:

code; /* polyspace DEFECT:* "OK defect" MISRA2004:5.2 "OK MISRA" */

//Multiple comments correct syntax:
code; /* polyspace DEFECT:* "OK defect" polyspace MISRA2004:5.2 "OK MISRA" */

In annotations, Polyspace ignores all text following double quotes. To specify additional
Family:Result_name, [Status:Severity] or Comment entries, you must reenter the
keyword polyspace after text in double quotes.

Set Status and Severity

You can specify allowed values on page 2-5 or enter custom values for status and severity.

//Set Status only
code; /* polyspace DEFECT:* [To fix] "some comment" */

//Set Status 'To fix' and Severity 'High'
code; /* polyspace VARIABLE:* [To fix: High] "some comment"*/

//Set custom status 'Assigned' and Severity 'Medium'
code; /* polyspace MISRA2012:12.* [Assigned: Medium] */

See Also

More About
• “Define Custom Annotation Format” on page 2-37
• “Short Names of Bug Finder Defect Checkers” on page 2-12
• “Short Names of Code Complexity Metrics” on page 2-29

 See Also

2-11

Short Names of Bug Finder Defect Checkers
To justify defects through code annotations, use the command-line names, or short names,
listed in the following table.

You can also enable the detection of a specific defect by using its short name as argument
of the -checkers option. Instead of listing individual defects, you can also specify groups
of defects by the group name, for instance, numerical, data_flow, and so on. See
analysis option Find defects (-checkers) in the documentation for Polyspace Bug
Finder or Polyspace Bug Finder Server.

Defect Command-line Name
*this not returned in
copy assignment operator

RETURN_NOT_REF_TO_THIS

Abnormal termination of
exit handler

EXIT_ABNORMAL_HANDLER

Absorption of float
operand

FLOAT_ABSORPTION

Accessing object with
temporary lifetime

TEMP_OBJECT_ACCESS

Alignment changed after
memory reallocation

ALIGNMENT_CHANGE

Alternating input and
output from a stream
without flush or
positioning call

IO_INTERLEAVING

Ambiguous declaration
syntax

MOST_VEXING_PARSE

Arithmetic operation
with NULL pointer

NULL_PTR_ARITH

Array access out of
bounds

OUT_BOUND_ARRAY

Array access with
tainted index

TAINTED_ARRAY_INDEX

Assertion ASSERT

2 Fix or Comment Polyspace Results

2-12

Defect Command-line Name
Atomic load and store
sequence not atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed
twice in an expression

ATOMIC_VAR_ACCESS_TWICE

Bad file access mode or
status

BAD_FILE_ACCESS_MODE_STATUS

Bad order of dropping
privileges

BAD_PRIVILEGE_DROP_ORDER

Base class assignment
operator not called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor
not virtual

DTOR_NOT_VIRTUAL

Bitwise and arithmetic
operation on the same
data

BITWISE_ARITH_MIX

Bitwise operation on
negative value

BITWISE_NEG

Blocking operation while
holding lock

BLOCKING_WHILE_LOCKED

Buffer overflow from
incorrect string format
specifier

STR_FORMAT_BUFFER_OVERFLOW

C++ reference to const-
qualified type with
subsequent modification

WRITE_REFERENCE_TO_CONST_TYPE

C++ reference type
qualified with const or
volatile

CV_QUALIFIED_REFERENCE_TYPE

Call through non-
prototyped function
pointer

UNPROTOTYPED_FUNC_CALL

Call to memset with
unintended value

MEMSET_INVALID_VALUE

 Short Names of Bug Finder Defect Checkers

2-13

Defect Command-line Name
Character value absorbed
into EOF

CHAR_EOF_CONFUSED

Closing a previously
closed resource

DOUBLE_RESOURCE_CLOSE

Code deactivated by
constant false condition

DEACTIVATED_CODE

Command executed from
externally controlled
path

TAINTED_PATH_CMD

Constant block cipher
initialization vector

CRYPTO_CIPHER_CONSTANT_IV

Constant cipher key CRYPTO_CIPHER_CONSTANT_KEY
Context initialized
incorrectly for
cryptographic operation

CRYPTO_PKEY_INCORRECT_INIT

Context initialized
incorrectly for digest
operation

CRYPTO_MD_BAD_FUNCTION

Conversion or deletion
of incomplete class
pointer

INCOMPLETE_CLASS_PTR

Copy constructor not
called in initialization
list

MISSING_COPY_CTOR_CALL

Copy of overlapping
memory

OVERLAPPING_COPY

Copy operation modifying
source operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race including
atomic operations

DATA_RACE_ALL

2 Fix or Comment Polyspace Results

2-14

Defect Command-line Name
Data race through
standard library
function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of
previously deallocated
pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Delete of void pointer DELETE_OF_VOID_PTR
Destination buffer
overflow in string
manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer
underflow in string
manipulation

STRLIB_BUFFER_UNDERFLOW

Destruction of locked
mutex

DESTROY_LOCKED

Deterministic random
output from constant
seed

RAND_SEED_CONSTANT

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Environment pointer
invalidated by previous
operation

INVALID_ENV_POINTER

Errno not checked ERRNO_NOT_CHECKED
Errno not reset MISSING_ERRNO_RESET
Exception caught by
value

EXCP_CAUGHT_BY_VALUE

Exception handler hidden
by previous handler

EXCP_HANDLER_HIDDEN

 Short Names of Bug Finder Defect Checkers

2-15

Defect Command-line Name
Execution of a binary
from a relative path can
be controlled by an
external actor

RELATIVE_PATH_CMD

Execution of externally
controlled command

TAINTED_EXTERNAL_CMD

File access between time
of check and use
(TOCTOU)

TOCTOU

File descriptor exposure
to child process

FILE_EXPOSURE_TO_CHILD

File manipulation after
chroot without chdir

CHROOT_MISUSE

Float conversion
overflow

FLOAT_CONV_OVFL

Float division by zero FLOAT_ZERO_DIV
Floating point
comparison with equality
operators

BAD_FLOAT_OP

Float overflow FLOAT_OVFL
Format string specifiers
and arguments mismatch

STRING_FORMAT

Function called from
signal handler not
asynchronous-safe

SIG_HANDLER_ASYNC_UNSAFE

Function called from
signal handler not
asynchronous-safe
(strict)

SIG_HANDLER_ASYNC_UNSAFE_STRICT

Function pointer
assigned with absolute
address

FUNC_PTR_ABSOLUTE_ADDR

2 Fix or Comment Polyspace Results

2-16

Defect Command-line Name
Function that can
spuriously fail not
wrapped in loop

SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP

Function that can
spuriously wake up not
wrapped in loop

SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP

Hard-coded buffer size HARD_CODED_BUFFER_SIZE
Hard-coded loop boundary HARD_CODED_LOOP_BOUNDARY
Hard-coded object size
used to manipulate
memory

HARD_CODED_MEM_SIZE

Host change using
externally controlled
elements

TAINTED_HOSTID

Improper array
initialization

IMPROPER_ARRAY_INIT

Inappropriate I/O
operation on device
files

INAPPROPRIATE_IO_ON_DEVICE

Incompatible padding for
RSA algorithm operation

CRYPTO_RSA_BAD_PADDING

Incompatible types
prevent overriding

VIRTUAL_FUNC_HIDING

Inconsistent cipher
operations

CRYPTO_CIPHER_BAD_FUNCTION

Incorrect data type
passed to va_arg

VA_ARG_INCORRECT_TYPE

Incorrect key for
cryptographic algorithm

CRYPTO_PKEY_INCORRECT_KEY

Incorrect order of
network connection
operations

BAD_NETWORK_CONNECT_ORDER

 Short Names of Bug Finder Defect Checkers

2-17

Defect Command-line Name
Incorrect pointer
scaling

BAD_PTR_SCALING

Incorrect type data
passed to va_start

VA_START_INCORRECT_TYPE

Incorrect use of
offsetof in C++

OFFSETOF_MISUSE

Incorrect use of
va_start

VA_START_MISUSE

Incorrect syntax of
flexible array member
size

FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE

Information leak via
structure padding

PADDING_INFO_LEAK

Inline constraint not
respected

INLINE_CONSTRAINT_NOT_RESPECTED

Integer constant
overflow

INT_CONSTANT_OVFL

Integer conversion
overflow

INT_CONV_OVFL

Integer division by zero INT_ZERO_DIV
Integer overflow INT_OVFL
Integer precision
exceeded

INT_PRECISION_EXCEEDED

Invalid assumptions
about memory
organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of
pointer

BAD_DELETE

Invalid file position INVALID_FILE_POS
Invalid free of pointer BAD_FREE
Invalid use of =
(assignment) operator

BAD_EQUAL_USE

2 Fix or Comment Polyspace Results

2-18

Defect Command-line Name
Invalid use of ==
(equality) operator

BAD_EQUAL_EQUAL_USE

Invalid use of standard
library floating point
routine

FLOAT_STD_LIB

Invalid use of standard
library integer routine

INT_STD_LIB

Invalid use of standard
library memory routine

MEM_STD_LIB

Invalid use of standard
library routine

OTHER_STD_LIB

Invalid use of standard
library string routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Large pass-by-value
argument

PASS_BY_VALUE

Library loaded from
externally controlled
path

TAINTED_PATH_LIB

Line with more than one
statement

MORE_THAN_ONE_STATEMENT

Load of library from a
relative path can be
controlled by an
external actor

RELATIVE_PATH_LIB

Loop bounded with
tainted value

TAINTED_LOOP_BOUNDARY

Member not initialized
in constructor

NON_INIT_MEMBER

Memory allocation with
tainted size

TAINTED_MEMORY_ALLOC_SIZE

Memory comparison of
float-point values

MEMCMP_FLOAT

 Short Names of Bug Finder Defect Checkers

2-19

Defect Command-line Name
Memory comparison of
padding data

MEMCMP_PADDING_DATA

Memory comparison of
strings

MEMCMP_STRINGS

Memory leak MEM_LEAK
Mismatch between data
length and size

DATA_LENGTH_MISMATCH

Mismatched alloc/dealloc
functions on Windows

WIN_MISMATCH_DEALLOC

Missing blinding for RSA
algorithm

CRYPTO_RSA_NO_BLINDING

Missing block cipher
initialization vector

CRYPTO_CIPHER_NO_IV

Missing break of switch
case

MISSING_SWITCH_BREAK

Missing byte reordering
when transferring data

MISSING_BYTESWAP

Missing case for switch
condition

MISSING_SWITCH_CASE

Missing cipher algorithm CRYPTO_CIPHER_NO_ALGORITHM
Missing cipher data to
process

CRYPTO_CIPHER_NO_DATA

Missing cipher final
step

CRYPTO_CIPHER_NO_FINAL

Missing cipher key CRYPTO_CIPHER_NO_KEY
Missing data for
encryption, decryption
or signing operation

CRYPTO_PKEY_NO_DATA

Missing explicit keyword MISSING_EXPLICIT_KEYWORD
Missing lock BAD_UNLOCK
Missing null in string
array

MISSING_NULL_CHAR

2 Fix or Comment Polyspace Results

2-20

Defect Command-line Name
Missing overload of
allocation or
deallocation function

MISSING_OVERLOAD_NEW_DELETE_PAIR

Missing padding for RSA
algorithm

CRYPTO_RSA_NO_PADDING

Missing parameters for
key generation

CRYPTO_PKEY_NO_PARAMS

Missing peer key CRYPTO_PKEY_NO_PEER
Missing private key CRYPTO_PKEY_NO_PRIVATE_KEY
Missing public key CRYPTO_PKEY_NO_PUBLIC_KEY
Missing reset of a freed
pointer

MISSING_FREED_PTR_RESET

Missing return statement MISSING_RETURN
Missing unlock BAD_LOCK
Missing virtual
inheritance

MISSING_VIRTUAL_INHERITANCE

Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a
signal handler

SIG_HANDLER_ERRNO_MISUSE

Misuse of narrow or wide
character string

NARROW_WIDE_STR_MISUSE

Misuse of readlink() READLINK_MISUSE
Misuse of return value
from nonreentrant
standard function

NON_REENTRANT_STD_RETURN

Misuse of sign-extended
character value

CHARACTER_MISUSE

Misuse of structure with
flexible array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

 Short Names of Bug Finder Defect Checkers

2-21

Defect Command-line Name
Modification of internal
buffer returned from
nonreentrant standard
function

WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FU
NC

Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Nonsecure hash algorithm CRYPTO_MD_WEAK_HASH
Nonsecure parameters for
key generation

CRYPTO_PKEY_WEAK_PARAMS

Nonsecure RSA public
exponent

CRYPTO_RSA_LOW_EXPONENT

Nonsecure SSL/TLS
protocol

CRYPTO_SSL_WEAK_PROTOCOL

Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously
opened resource

DOUBLE_RESOURCE_OPEN

Overlapping assignment OVERLAPPING_ASSIGN
Partially accessed array PARTIALLY_ACCESSED_ARRAY
Partial override of
overloaded virtual
functions

PARTIAL_OVERRIDE

Pointer access out of
bounds

OUT_BOUND_PTR

Pointer dereference with
tainted offset

TAINTED_PTR_OFFSET

Pointer or reference to
stack variable leaving
scope

LOCAL_ADDR_ESCAPE

2 Fix or Comment Polyspace Results

2-22

Defect Command-line Name
Pointer to non-
initialized value
converted to const
pointer

NON_INIT_PTR_CONV

Possible invalid
operation on boolean
operand

INVALID_OPERATION_ON_BOOLEAN

Possible misuse of
sizeof

SIZEOF_MISUSE

Possibly unintended
evaluation of expression
because of operator
precedence rules

OPERATOR_PRECEDENCE

Precision loss in
integer to float
conversion

INT_TO_FLOAT_PRECISION_LOSS

Predefined macro used as
an object

MACRO_USED_AS_OBJECT

Predictable block cipher
initialization vector

CRYPTO_CIPHER_PREDICTABLE_IV

Predictable cipher key CRYPTO_CIPHER_PREDICTABLE_KEY
Predictable random
output from predictable
seed

RAND_SEED_PREDICTABLE

Preprocessor directive
in macro argument

PRE_DIRECTIVE_MACRO_ARG

Privilege drop not
verified

MISSING_PRIVILEGE_DROP_CHECK

Qualifier removed in
conversion

QUALIFIER_MISMATCH

Resource leak RESOURCE_LEAK

 Short Names of Bug Finder Defect Checkers

2-23

Defect Command-line Name
Returned value of a
sensitive function not
checked

RETURN_NOT_CHECKED

Return from
computational exception
signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Return of non const
handle to encapsulated
data member

BREAKING_DATA_ENCAPSULATION

Self assignment not
tested in operator

MISSING_SELF_ASSIGN_TEST

Sensitive data printed
out

SENSITIVE_DATA_PRINT

Sensitive heap memory
not cleared before
release

SENSITIVE_HEAP_NOT_CLEARED

Shared data access
within signal handler

SIG_HANDLER_SHARED_OBJECT

Shift of a negative
value

SHIFT_NEG

Shift operation overflow SHIFT_OVFL
Side effect in arguments
to unsafe macro

SIDE_EFFECT_IN_UNSAFE_MACRO_ARG

Side effect of
expression ignored

SIDE_EFFECT_IGNORED

Signal call from within
signal handler

SIG_HANDLER_CALLING_SIGNAL

Signal call in
multithreaded program

SIGNAL_USE_IN_MULTITHREADED_PROGRAM

Sign change integer
conversion overflow

SIGN_CHANGE

Standard function call
with incorrect arguments

STD_FUNC_ARG_MISMATCH

2 Fix or Comment Polyspace Results

2-24

Defect Command-line Name
Static uncalled function UNCALLED_FUNC
Stream argument with
possibly unintended side
effects

STREAM_WITH_SIDE_EFFECT

Subtraction or
comparison between
pointers to different
arrays

PTR_TO_DIFF_ARRAY

Tainted division operand TAINTED_INT_DIVISION
Tainted modulo operand TAINTED_INT_MOD
Tainted NULL or non-
null-terminated string

TAINTED_STRING

Tainted sign change
conversion

TAINTED_SIGN_CHANGE

Tainted size of variable
length array

TAINTED_VLA_SIZE

Tainted string format TAINTED_STRING_FORMAT
Thread-specific memory
leak

THREAD_MEM_LEAK

Too many va_arg calls
for current argument
list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Umask used with chmod-
style arguments

BAD_UMASK

Uncleared sensitive data
in stack

SENSITIVE_STACK_NOT_CLEARED

Universal character name
from token concatenation

PRE_UCNAME_JOIN_TOKENS

Unprotected dynamic
memory allocation

UNPROTECTED_MEMORY_ALLOCATION

Unreachable code UNREACHABLE

 Short Names of Bug Finder Defect Checkers

2-25

Defect Command-line Name
Unreliable cast of
function pointer

FUNC_CAST

Unreliable cast of
pointer

PTR_CAST

Unsafe call to a system
function

UNSAFE_SYSTEM_CALL

Unsafe conversion
between pointer and
integer

BAD_INT_PTR_CAST

Unsafe conversion from
string to numerical
value

UNSAFE_STR_TO_NUMERIC

Unsafe standard
encryption function

UNSAFE_STD_CRYPT

Unsafe standard function UNSAFE_STD_FUNC
Unsigned integer
constant overflow

UINT_CONSTANT_OVFL

Unsigned integer
conversion overflow

UINT_CONV_OVFL

Unsigned integer
overflow

UINT_OVFL

Unused parameter UNUSED_PARAMETER
Useless if USELESS_IF
Use of automatic
variable as putenv-
family function argument

PUTENV_AUTO_VAR

Use of dangerous
standard function

DANGEROUS_STD_FUNC

Use of externally
controlled environment
variable

TAINTED_ENV_VARIABLE

2 Fix or Comment Polyspace Results

2-26

Defect Command-line Name
Use of indeterminate
string

INDETERMINATE_STRING

Use of memset with size
argument zero

MEMSET_INVALID_SIZE

Use of non-secure
temporary file

NON_SECURE_TEMP_FILE

Use of obsolete standard
function

OBSOLETE_STD_FUNC

Use of path manipulation
function without maximum
sized buffer checking

PATH_BUFFER_OVERFLOW

Use of plain char type
for numerical value

BAD_PLAIN_CHAR_USE

Use of previously closed
resource

CLOSED_RESOURCE_USE

Use of previously freed
pointer

FREED_PTR

Use of setjmp/longjmp SETJMP_LONGJMP_USE
Use of signal to kill
thread

THREAD_KILLED_WITH_SIGNAL

Use of tainted pointer TAINTED_PTR
Variable length array
with nonpositive size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Vulnerable path
manipulation

PATH_TRAVERSAL

Vulnerable permission
assignments

DANGEROUS_PERMISSIONS

Vulnerable pseudo-random
number generator

VULNERABLE_PRNG

Weak cipher algorithm CRYPTO_CIPHER_WEAK_CIPHER
Weak cipher mode CRYPTO_CIPHER_WEAK_MODE

 Short Names of Bug Finder Defect Checkers

2-27

Defect Command-line Name
Weak padding for RSA
algorithm

CRYPTO_RSA_WEAK_PADDING

Write without a further
read

USELESS_WRITE

Writing to const
qualified object

CONSTANT_OBJECT_WRITE

Writing to read-only
resource

READ_ONLY_RESOURCE_WRITE

Wrong allocated object
size for cast

OBJECT_SIZE_MISMATCH

Wrong type used in
sizeof

PTR_SIZEOF_MISMATCH

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-5

2 Fix or Comment Polyspace Results

2-28

Short Names of Code Complexity Metrics
When annotating your code to justify metrics or creating custom software quality
objectives, you use short names of code complexity metrics instead of the full names. The
following table lists the short names for code complexity metrics.

Note that you can only annotate your code for function level code complexity metrics only.

Project Metrics
Code Metric Acronym
Number of Direct Recursions AP_CG_DIRECT_CYCLE
Number of Header Files INCLUDES
Number of Files FILES
Number of Protected Shared
Variables (Code Prover only)

PSHV

Number of Recursions AP_CG_CYCLE
Number of Potentially Unprotected
Shared Variables (Code Prover only)

UNPSHV

Program Maximum Stack Usage (Code
Prover only)

PROG_MAX_STACK

Program Minimum Stack Usage (Code
Prover only)

PROG_MIN_STACK

File Metrics
Code Metric Acronym
Comment Density COMF
Estimated Function Coupling FCO
Number of Lines TOTAL_LINES
Number of Lines Without Comment LINES_WITHOUT_CMT

 Short Names of Code Complexity Metrics

2-29

Function Metrics
Code Metric Acronym
Cyclomatic Complexity VG
Higher Estimate of Local Variable
Size

LOCAL_VARS_MAX

Language Scope VOCF
Language Scope LOCAL_VARS_MIN
Minimum Stack Usage (Code Prover
only)

MIN_STACK

Maximum Stack Usage (Code Prover
only)

MAX_STACK

Number of Call Levels LEVEL
Number of Call Occurrences NCALLS
Number of Called Functions CALLS
Number of Calling Functions CALLING
Number of Executable Lines FXLN
Number of Function Parameters PARAM
Number of Goto Statements GOTO
Number of Instructions STMT
Number of Lines Within Body FLIN
Number of Local Non-Static
Variables

LOCAL_VARS

Number of Local Static Variables LOCAL_STATIC_VARS
Number of Paths PATH
Number of Return Statements RETURN

2 Fix or Comment Polyspace Results

2-30

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-5

 See Also

2-31

Annotate Code for Known or Acceptable Results (Not
Recommended)

Note Starting R2017b, Polyspace uses a simpler annotation format. See “Annotate Code
and Hide Known or Acceptable Results” on page 2-5.

If Polyspace finds defects in your code that you cannot or will not fix, you can add
annotations to your code. These annotations are code comments that indicate known or
acceptable defects or coding rule violations. By using these annotations, you can:

• Avoid reviewing defects or coding rule violations from previous analyses.
• Preserve review comments and classifications.

Note Source code annotations do not apply to code comments. You cannot annotate these
rules:

• MISRA C:2004 Rules 2.2 and 2.3
• MISRA C:2012 Rules 3.1 and 3.2
• MISRA-C++ Rule 2-7-1
• JSF++ Rules 127 and 133

Add Annotations Manually
This method shows you how to enter comments directly into your source files by using the
Polyspace code annotation syntax. The syntax is not case-sensitive and applies to the first
uncommented line of C/C++ code following the annotation.

1 Open your source file in an editor and locate the line or section of code that you want
to annotate.

2 Add one of the following annotations:

• For a single line of code, add the following text directly before the line of code
that you want to annotate.

/* polyspace<Type:Kind1[,Kind2] : [Severity] : [Status] > [Notes] */

2 Fix or Comment Polyspace Results

2-32

• For a section of code, use the following syntax.
/* polyspace:begin<Type:Kind1[,Kind2] : [Severity] : [Status] > [Notes] */

... Code section ...

/* polyspace:end<Type:Kind1[,Kind2] : [Severity] : [Status] > */

If a macro expands to multiple lines, use the syntax for code sections even though
the macro itself covers one line. The single-line syntax applies only to results that
appear in the first line of the expanded macro.

3 Replace the words Type, Kind1, [Kind2], [Severity], [Status], and
[Additional text] with allowed values, indicated in the following table. The text
with square brackets [] is optional and you can delete it. See “Syntax Examples” on
page 2-35.

Word Allowed Values
Type The type of results:

• Defect (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code Prover)
• VARIABLE, for global variables (Polyspace Code Prover)
• CODE-METRIC, for code complexity metrics.
• MISRA-C, for MISRA C:2004
• MISRA-AC-AGC
• MISRA-C3, for MISRA C:2012
• MISRA-CPP
• JSF
• Custom, for custom coding rule violations.

 Annotate Code for Known or Acceptable Results (Not Recommended)

2-33

Word Allowed Values
Kind1,
[Kind2],...

For defects, run-time checks and code metrics, use the short names of
checkers. See:

• “Short Names of Bug Finder Defect Checkers” on page 2-12
• “Short Names of Code Prover Run-Time Checks” (Polyspace Code

Prover Access)
• “Short Names of Code Complexity Metrics” on page 2-29

For coding rule violations, specify the rule number or numbers.

For global variables, the only allowed value is ALL.

If you want the comment to apply to all possible defects or coding rules,
specify ALL.

Severity Text that indicates how critical you consider the defect. Enter one of the
following:

• Unset
• High
• Medium
• Low

This text populates the Severity column on the Results List pane.

2 Fix or Comment Polyspace Results

2-34

Word Allowed Values
Status Text that indicates how you intend to correct the error in your code.

Enter one of the following or any other text:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

This text populates the Status column on the Results List pane. The
status is also used in Polyspace Access to determine whether a result is
Done. To justify a result, use Justified, No action planned or Not
a defect.

Notes Additional comments, such as a keyword or an explanation for the
status and severity.

Syntax Examples

• A single defect:
/* polyspace<Defect:HARD_CODED_BUFFER_SIZE:Medium:To investigate> Known issue */
int table[100];

• A single run-time check:

/* polyspace<RTE: ZDV : High : To Fix > Denominator cannot be zero */
y=1/x;

• A MISRA C:2012 rule violation:

/* polyspace<MISRA-C3: 13.1 : Low : Justified> Known issue */
int arr[2] = {x++,y};

• Unused global variable:

/* polyspace<VARIABLE: ALL : Low : Justified> Variable to use later*/
int var_unused;

• Multiple defects:
polyspace<Defect:USELESS_WRITE,DEAD_CODE:Low:No Action Planned> OK issue

 Annotate Code for Known or Acceptable Results (Not Recommended)

2-35

• Multiple JSF rule violations:

polyspace<JSF:9,13:Low:Justified> Known issue

2 Fix or Comment Polyspace Results

2-36

Define Custom Annotation Format
This example shows how to create and edit an XML file to define an annotation format
and map it to the Polyspace annotation syntax.

To get started, copy the following code to a text editor and save it on your machine as
annotations_description.xml.

 Define Custom Annotation Format

2-37

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example XML">

 <Expressions Search_For_Keywords="myKeyword"
 Separator_Result_Name="," >
 <!-- Define annotation format in this
 section by adding <Expression/> elements -->

 <Expression Mode="SAME_LINE"
 Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 <Expression Mode="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rule_Identifier_Position="2"
 />

 <Expression Mode="BEGIN"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_on"
 Rule_Identifier_Position="1"
 Case_Insensitive="true"
 />

 <Expression Mode="END"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_off"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="END_ALL"
 Regex="myKeyword\sBlock_off_all"
 />

 <Expression Mode="SAME_LINE"

Regex="myKeywords\s+(\w+(\s*,\s*\w+)*)
(\s*\[(\w+\s*)*([:]\s*(\w+\s*)+)*\])*(\s*-*\s*)*([^-]*)(\s*-*)*"
Rule_Identifier_Position="1"
Status_Position="4"
Severity_Position="6"
Comment_Position="8"
 />
<! -- Put the regular expression on a single line instead of two line
when you copy it to a text editor -->

 <!-- SAME_LINE example with more complex regular expression.
 Matches the following annotations:
 //myKeywords 50 [my_status:my_severity] -Additional comment-
 //myKeywords 50 [my_status]
 //myKeywords 50 [:my_severity]
 //myKeywords 50 -Additional comment-
 -->

 </Expressions>

 <Mapping>

2 Fix or Comment Polyspace Results

2-38

 <!-- Map your annotation syntax to the Polyspace annotation
 syntax by adding <Result_Name_Mapping /> elements in this section -->

<Result_Name_Mapping Rule_Identifier="100" Family="DEFECT" Result_Name="INT_ZERO_DIV"/>

<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
<Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
<Result_Name_Mapping Rule_Identifier="ALL_MISRA" Family="MISRA-C3" Result_Name="*"/>
 </Mapping>
</Annotations>

The XML file consists of two parts:

• <Expressions>...</Expressions> where you define the format of your
annotation syntax.

• <Mapping>...</Mapping> where you map your syntax to the Polyspace annotation
syntax.

After you edit this file, Polyspace can interpret your custom code annotation when you
invoke the option -xml-annotations-description. For more on analysis options, see
the documentation for Polyspace Bug Finder or Polyspace Bug Finder Server .

Define Annotation Syntax Format
To define an annotation syntax in Polyspace, your syntax must follow a pattern that you
can represent with a regular expression. See Regular Expresions. It is recommended that
you include a keyword in the pattern of your annotation syntax to help identify it. In this
example, the keyword is myKeyword. Set the attribute Search_For_Keywords equal to
this keyword.

Once you know the pattern of your annotation, you can define it in the XML by adding an
<Expression/> element and specifying at least the attributes Mode, Regex, and
Rule_Identifier_Position. For instance, the first <Expression/> element in
annotations_description.xml defines an annotation with these attributes:

• Mode="SAME_LINE". The annotation applies to code on the same line.
• Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)". Polyspace uses the regular

expression to search for a string that begins with myKeyword, followed by a space \s
+. Polyspace then searches for a capturing group (\w+(\s*,\s*\w+)*) that includes
an alphanumeric rule identifier \w+ and, optionally, additional comma-separated rule
identifiers (\s*,\s*\w+)*.

 Define Custom Annotation Format

2-39

https://www.mathworks.com/help/matlab/matlab_prog/regular-expressions.html

• Rule_Identifier_Position="1". The integer value of this attribute corresponds
to the number of opening parentheses preceding the relevant capturing group in the
regular expression. In myKeyword\s+(\w+(\s*,\s*\w+)*), one opening
parenthesis precedes the capturing group of the rule identifier (\w+(\s*,\s*\w
+)*). If you want to match rule identifiers captured by (\s*,\s*\w+), then you set
Rule_Identifier_Position="2" because two opening parentheses precede this
capturing group.

The list of attributes and their values are listed in this table. The example column refers
to the format defined in annotations_description.xml.

Attribute Use Value Example
Mode Required SAME_LINE Applies only on the same line as the

annotation.

code; //myKeyword 100

GOTO_INCRE
MENT

Applies on the same line as the
annotation and the following n lines:

3. code; // myKeyword +3 ALL_MISRA
4. /*comments */
5.
6. code;
7. code;

The preceding annotation applies to
lines 3–6 only.

BEGIN Applies to the same line and all
following lines until a corresponding
expression with attribute
Mode="END" or "END_ALL", or until
the end of the file.

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...

2 Fix or Comment Polyspace Results

2-40

Attribute Use Value Example
END Stops the application of a rule

identifier declared by a
corresponding expression with
attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword 50 Block_off

Only rule identifier 50 is turned off.
Rule identifier 51 still applies.

END_ALL Stops all rule identifiers declared by
an expression with attribute
Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword Block_off_all

Rule identifiers 50 and 51 are turned
off.

Regex Required Regular
expression
search string

See Regular Expresions.
Regex="myKeyword\s+(\w+
(\s*,\s*\w+)*)" matches these
expressions:

// myKeyword 50, 51
/* myKeyword ALL_MISRA, 100 */

 Define Custom Annotation Format

2-41

https://www.mathworks.com/help/matlab/matlab_prog/regular-expressions.html

Attribute Use Value Example
Rule_Identifi
er_Position

Required,
except when
you set
Mode="END_AL
L"

Integer The integer value of this attribute
corresponds to the number of
opening parentheses in the regular
expression before the relevant search
expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on
a single line when you edit your XML
file.

The search expression for the rule
identifier \w+(\s*,\s*\w+)* is
after the second opening parenthesis
of the regular expression.

2 Fix or Comment Polyspace Results

2-42

Attribute Use Value Example
Increment_Pos
ition

Required only
when you set
Mode="GOTO_I
NCREMENT"

Integer The integer value of this attribute
corresponds to the number of
opening parentheses in the regular
expression before the relevant search
expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on
a single line when you edit your XML
file.

The search expression for the
increment \+\d+\s is after the first
opening parenthesis of the regular
expression.

Status_Positi
on

Optional Integer See Increment_Position example.
When you use this attribute, the
entry in your annotation is displayed
in the Status column on the Results
List pane of the user interface.

Severity_Posi
tion

Optional Integer See Increment_Position example.
When you use this attribute, the
entry in your annotation is displayed
in the Severity column on the
Results List pane of the user
interface.

 Define Custom Annotation Format

2-43

Attribute Use Value Example
Comment_Posit
ion

Optional Integer See Increment_Position example.
When you use this attribute, the
entry in your annotation is displayed
in the Comment column on the
Results List pane of the user
interface. Your comment is appended
to the string Justified by
annotation in source:

Case_Insensit
ive

Optional True or false When you set this attribute to "true",
the regular expression is case
insensitive, otherwise it is case
sensitive. If you do not declare this
attribute in your expression, the
regular expression is case sensitive.
For Case_Insensitive="true",
these annotations are equivalent:

//MYKEYWORD ALL_MISRA BLOCK_ON

//mykeyword all_misra block_on

Map Your Annotation to the Polyspace Annotation Syntax
After you define your annotation format, you can map the rule identifiers you are using to
their corresponding Polyspace annotation syntax. You can do this mapping by adding an
<Result_Name_Mapping/> element and specifying attributes Rule_Identifier,
Family, and Result_Name. For instance, if rule identifier 50 corresponds to MISRA C:
2012 rule 8.4, map it to the Polyspace syntax MISRA-C3:8.4 by using this element:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

The list of attributes and their values are listed in this table. The example column refers
to the format defined in annotations_description.xml.

2 Fix or Comment Polyspace Results

2-44

Attribute Use Value Example
Rule_Identifier Required User defined See the mapping

section of
annotations_desc
ription.xml

Family Required Corresponds to
Polyspace results
family. For a list of
allowed values, see
allowed values on
page 2-5.

See the mapping
section of
annotations_desc
ription.xml

Result_Name Required Corresponds to
Polyspace result
names. For a list of
allowed values, see
allowed values on
page 2-5.

See the mapping
section of
annotations_desc
ription.xml

See Also
“Annotation Description Full XML Template” on page 2-46

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-5

 See Also

2-45

Annotation Description Full XML Template
This table lists all the elements, attributes, and values of the XML that you can use to
define an annotation format and map it to the Polyspace annotation syntax. For an
example of how to edit an XML to define annotation syntax, see “Define Custom
Annotation Format” on page 2-37.

Element Attribute Use Value
Annotations Group Required User defined string.

For example,
"Custom
Annotations"

Expressions Search_For_Keywo
rds

Required User defined string.
This string is a
keyword you include
in the pattern of your
annotation syntax to
help identify it. For
example,
"myKeyword"

Separator_Result
_Name

Required User defined string.
This string is a
separator when you
list multiple
Polyspace result
names in the same
annotation. For
example ","

Separator_Family
_And_Result_Name

Optional User defined string.
This string is a
separator when you
list multiple
Polyspace results
families in the same
annotation. For
example, " "

2 Fix or Comment Polyspace Results

2-46

Element Attribute Use Value
Separator_Family Optional User defined string.

This string is a
separator when you
list a Polyspace
results family and
results name in the
same annotation. For
example, ":"

Expression Mode Required SAME_LINE
GOTO_INCREMENT
BEGIN
END
END_ALL
NEXT_CODE_LINE

The annotation
applies to the next
line of code.
Comments and blank
lines are ignored.
GOTO_LABEL
LABEL
XML_START
XML_CONTENT

The annotation for
this expression must
be on a single line.
XML_END

Regex Required Regular expression
search string that
matches the pattern
of your annotation.

 Annotation Description Full XML Template

2-47

Element Attribute Use Value
Rule_Identifier_
Position

Required, except
when you set
Mode="END_ALL"
or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Increment_Positi
on

Required only when
you set
Mode="GOTO_INCRE
MENT"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Status_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Severity_Positio
n

Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

2 Fix or Comment Polyspace Results

2-48

Element Attribute Use Value
Comment_Position Optional Integer. The integer

value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Label_Position Required only when
you set
Mode="GOTO_LABEL
" or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Case_Insensitive Optional True or false. When
you do not declare
this attribute, the
default value is false.

Is_Pragma Optional True or false. When
you do not declare
this attribute, the
default value is false.

Set this attribute to
true if you want to
declare your
annotation using a
pragma instead of a
comment.

 Annotation Description Full XML Template

2-49

Element Attribute Use Value
Applies_Also_On_
Same_Line

Optional True or false. When
you do not declare
this attribute, the
default value is true.

Use this attribute to
enable annotations
with the old
Polyspace syntax to
apply on the same
line of code.

Mapping None None None
Result_Name_Mapp
ing

Rule_Identifier Required User defined
Family Required Corresponds to

Polyspace results
family. For a list of
allowed values, see
allowed values on
page 2-5.

Result_Name Required Corresponds to
Polyspace result
names. For a list of
allowed values, see
allowed values on
page 2-5.

Example
This example code covers some of the less commonly used attributes for defining
annotations in XML.

2 Fix or Comment Polyspace Results

2-50

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="XML Template">

 <Expressions Separator_Result_Name=","
 Search_For_Keywords="myKeyword">

 <Expression Mode="GOTO_LABEL"
 Regex="(\A|\W)myKeyword\s+S\s+(\d+(\s*,\s*\d+)*)\s+([a-zA-Z_-]\w+)"
 Rule_Identifier_Position="2"
 Label_Position="4"

 />

 <Expression Mode="LABEL"
 Regex="(\A|\W)myKeyword\s+L:(\w+)"
 Label_Position="2"

 />
 <!-- Annotation applies starting current line until
 next declaration of label word "myLabel"
 Example:

 code; // myKeyword S 100 myLabel
 ...
 more code;
 // myKeyword L myLabel
 -->

 <Expression Mode="BEGIN"
 Regex="#\s*pragma\s+myKeyword_MESSAGES_ON\s+(\w+)"
 Rule_Identifier_Position="1"
 Is_Pragma="true"
 />
 <!-- Annotation declared with pragma instead of comment
 Example:#pragma myKeyword_MESSAGES_ON 100 -->

 <!-- Comment declaration with XML format-->

 <!-- XML_START must be declared before XML_CONTENT -->
 <Expression Mode="XML_START"
 Regex="<\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: <myKeyword_COMMENT> -->

 <Expression Mode="XML_CONTENT"
 Regex="<\s*(\d*)\s*>(((?![*]/)(?!<).)*)</\s*(\d*)\s*>"
 Rule_Identifier_Position="1"
 Comment_Position="2"

 />
 <!-- Example: <100>This is my comment</100>
 XML_CONTENT must be declare on a single line.

 <100>This is my comment
 </100>
 is incorrect.

 Annotation Description Full XML Template

2-51

 -->

 <Expression Mode="XML_END"
 Regex="</\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: </myKeyword_COMMENT> -->
 </Expressions>

 <Mapping>

 <Result_Name_Mapping Rule_Identifier="100" Family="MISRA-C" Result_Name="4.1"/>
 </Mapping>
</Annotations>

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 2-5

2 Fix or Comment Polyspace Results

2-52

Manage Results

• “Filter and Sort Results” on page 3-2
• “Classification of Defects by Impact” on page 3-7
• “Bug Finder Defect Groups” on page 3-19

3

Filter and Sort Results
When you open the results of a Polyspace analysis in the DASHBOARD view of Polyspace
Access, you see statistics about your project in the Project Overview dashboard. The
statistics cover findings for defects (Bug Finder), run-time checks (Code Prover), coding
rule violations or other results. To organize your review, you can narrow down the list or
group results by file or result type.

3 Manage Results

3-2

 Filter and Sort Results

3-3

Some of the ways you can use filtering are:

• You can display certain types of defects or run-time checks only.

For instance, for a Bug Finder analysis, you can display only high-impact defects. See
“Classification of Defects by Impact” on page 3-7.

• You can display only new results found since the last analysis.
• You can display only the results that you have not justified. Results that are not
justified are considered Open. They are results with status Unreviewed, To
Investigate, To Fix, or Other.

For information on justification, see “Address Polyspace Results Through Bug Fixes or
Comments” on page 2-2.

Filter Results
You can filter results by drilling down on a set of results in a dashboard, or directly in the
Results List pane by using the REVIEW toolstrip filters.

Filter Using Dashboards

3 Manage Results

3-4

In the DASHBOARD view, you can open dashboards for different families of results, then
click a number to open a list filtered to the corresponding set of results. For instance:

• To see only high-impact defects that are still Open in a Bug Finder analysis, click the
corresponding number in the Summary section of the Defects dashboard. Open
results have status Unreviewed, To Investigate, To Fix, or Other.

• To see only red checks that are Done in a Code Prover analysis, click the
corresponding number in the Summary section of the Run-time Checks dashboard.
Done results have status Justified, No Action Planned, or Not A Defect.

• To see violations of the MISRAC C:2012 coding standards in a particular file, use the
table in the Details section of the MISRA C:2012 dashboard.

If you select a folder that contains multiple projects in the PROJECT EXPLORER, the
dashboards display an aggregate of results for all the projects. Most of the fields in the
dashboard are not clickable when you look at the statistics for multiple projects.

Filter Using REVIEW Toolstrip

In the REVIEW view, you can filter using the buttons in the toolstrip. The filter bar
underneath the toolstrip shows how many finding are displayed out of the total findings,
along with which filters are currently applied.

The buttons in the FILTERS section of the toolstrip are global. They apply to all families
of findings. To filter out by the content of a column in the “Results List” on page 1-19,
right-click the content of the column for that result.

If you do not want to filter by the exact contents of a column, you can use the Show only
and Filter out text filters instead. For instance, you want to filter out subfolders of a

 Filter and Sort Results

3-5

specific folder. Instead of filtering out the full folder path using the right-click menu, then
sorting the Folder and Filter out filters.

Filters you apply do not carry over to the next analysis.

See Also

More About
• “Classification of Defects by Impact” on page 3-7

3 Manage Results

3-6

Classification of Defects by Impact
To prioritize your review of Polyspace Bug Finder defects, you can use the Impact
attribute assigned to the defect. This attribute appears on:

• The Summary section of the Defects dashboard.

You can view at a glance whether you have many high impact defects, and how many
defects are still open. Open defects are defects that have a status Unreviewed, To
Investigate, To Fix, or Other. You can click a number to open the corresponding
set of results in the Results List pane. See “Filter and Sort Results” on page 3-2.

• The Results List pane, in the REVIEW view. Use the drop-down selection under the
Defects button in the toolstrip.

You can filter out low and/or medium impact defects using this button. See “Filter and
Sort Results” on page 3-2.

• The Result Details pane, beside the defect name.

The impact is assigned to a defect based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.

If a defect is likely to cause a code to fail, it is treated as a high impact defect. If the
defect currently does not cause code failure but can cause problems with code
maintenance in the future, it is a low impact defect.

 Classification of Defects by Impact

3-7

• Certainty, or the rate of false positives.

For instance, the defect Integer division by zero is a high-impact defect because it is
almost certain to cause a code crash. On the other hand, the defect Dead code has low
impact because by itself, presence of dead code does not cause code failure. However, the
dead code can hide other high-impact defects.

You cannot change the impact assigned to a defect.

High Impact Defects
The following list shows the high-impact defects.

Concurrency

• Data race
• Data race through standard library function call
• Deadlock
• Double lock
• Double unlock
• Missing unlock

Data Flow

• Non-initialized pointer
• Non-initialized variable

Dynamic Memory

• Deallocation of previously deallocated pointer
• Invalid deletion of pointer
• Invalid free of pointer
• Use of previously freed pointer

Numerical

• Absorption of float operand
• Float conversion overflow

3 Manage Results

3-8

• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine

Object Oriented

• Base class assignment operator not called
• Copy constructor not called in initialization list
• Object slicing

Programming

• Assertion
• Character value absorbed into EOF
• Declaration mismatch
• Errno not reset
• Invalid use of == (equality) operator
• Invalid use of standard library routine
• Invalid va_list argument
• Misuse of errno
• Misuse of narrow or wide character string
• Misuse of return value from nonreentrant standard function
• Possible misuse of sizeof
• Possibly unintended evaluation of expression because of operator

precedence rules
• Typedef mismatch
• Variable length array with nonpositive size
• Writing to const qualified object
• Wrong type used in sizeof

 Classification of Defects by Impact

3-9

Resource Management

• Closing a previously closed resource
• Resource leak
• Use of previously closed resource
• Writing to read-only resource

Security

• Bad order of dropping privileges
• Privilege drop not verified
• Returned value of a sensitive function not checked
• Unsafe call to a system function
• Use of non-secure temporary file

Static Memory

• Array access out of bounds
• Buffer overflow from incorrect string format specifier
• Destination buffer overflow in string manipulation
• Destination buffer underflow in string manipulation
• Invalid use of standard library memory routine
• Invalid use of standard library string routine
• Null pointer
• Pointer access out of bounds
• Pointer or reference to stack variable leaving scope
• Subtraction or comparison between pointers to different arrays
• Use of automatic variable as putenv-family function argument
• Use of path manipulation function without maximum sized buffer

checking
• Wrong allocated object size for cast

Medium Impact Defects
The following list shows the medium-impact defects.

3 Manage Results

3-10

Concurrency

• Atomic load and store sequence not atomic
• Atomic variable accessed twice in an expression
• Data race including atomic operations
• Destruction of locked mutex
• Missing lock
• Thread-specific memory leak

Cryptography

• Constant block cipher initialization vector
• Constant cipher key
• Context initialized incorrectly for cryptographic operation
• Context initialized incorrectly for digest operation
• Incompatible padding for RSA algorithm operation
• Inconsistent cipher operations
• Incorrect key for cryptographic algorithm
• Missing blinding for RSA algorithm
• Missing block cipher initialization vector
• Missing cipher algorithm
• Missing cipher data to process
• Missing cipher final step
• Missing cipher key
• Missing data for encryption, decryption or signing operation
• Missing padding for RSA algorithm
• Missing parameters for key generation
• Missing peer key
• Missing private key
• Missing public key
• Nonsecure hash algorithm
• Nonsecure parameters for key generation

 Classification of Defects by Impact

3-11

• Nonsecure RSA public exponent
• Nonsecure SSL/TLS protocol
• Predictable block cipher initialization vector
• Predictable cipher key
• Weak cipher algorithm
• Weak cipher mode
• Weak padding for RSA algorithm

Data Flow

• Pointer to non-initialized value converted to const pointer
• Unreachable code
• Useless if

Dynamic Memory

• Memory leak

Numerical

• Bitwise operation on negative value
• Integer constant overflow
• Integer overflow
• Sign change integer conversion overflow
• Use of plain char type for numerical value

Object Oriented

• Base class destructor not virtual
• Conversion or deletion of incomplete class pointer
• Copy operation modifying source operand
• Incompatible types prevent overriding
• Member not initialized in constructor
• Missing virtual inheritance
• Partial override of overloaded virtual functions

3 Manage Results

3-12

• Return of non const handle to encapsulated data member
• Self assignment not tested in operator

Programming

• Abnormal termination of exit handler
• Bad file access mode or status
• Call through non-prototyped function pointer
• Copy of overlapping memory
• Environment pointer invalidated by previous operation
• Exception caught by value
• Exception handler hidden by previous handler
• Floating point comparison with equality operators
• Function called from signal handler not asynchronous-safe
• Function called from signal handler not asynchronous-safe (strict)
• Improper array initialization
• Incorrect data type passed to va_arg
• Incorrect pointer scaling
• Incorrect type data passed to va_start
• Incorrect use of offsetof in C++
• Incorrect use of va_start
• Inline constraint not respected
• Invalid assumptions about memory organization
• Invalid file position
• Invalid use of = (assignment) operator
• Memory comparison of padding data
• Memory comparison of strings
• Missing byte reordering when transfering data
• Misuse of errno in a signal handler
• Misuse of sign-extended character value
• Shared data access within signal handler

 Classification of Defects by Impact

3-13

• Side effect in arguments to unsafe macro
• Signal call from within signal handler
• Standard function call with incorrect arguments
• Too many va_arg calls for current argument list
• Unsafe conversion between pointer and integer
• Use of indeterminate string
• Use of memset with size argument zero

Resource Management

• Opening previously opened resource

Security

• Deterministic random output from constant seed
• Errno not checked
• Execution of a binary from a relative path can be controlled by an

external actor
• File access between time of check and use (TOCTOU)
• File descriptor exposure to child process
• File manipulation after chroot without chdir
• Inappropriate I/O operation on device files
• Incorrect order of network connection operations
• Load of library from a relative path can be controlled by an

external actor
• Mismatch between data length and size
• Misuse of readlink()
• Predictable random output from predictable seed
• Sensitive data printed out
• Sensitive heap memory not cleared before release
• Uncleared sensitive data in stack
• Unsafe standard encryption function
• Unsafe standard function

3 Manage Results

3-14

• Vulnerable permission assignments
• Vulnerable pseudo-random number generator

Static Memory

• Unreliable cast of function pointer
• Unreliable cast of pointer

Tainted Data

• Array access with tainted index
• Command executed from externally controlled path
• Execution of externally controlled command
• Host change using externally controlled elements
• Library loaded from externally controlled path
• Loop bounded with tainted value
• Memory allocation with tainted size
• Tainted sign change conversion
• Tainted size of variable length array
• Use of externally controlled environment variable

Low Impact Defects
The following list shows the low-impact defects.

Concurrency

• Blocking operation while holding lock
• Function that can spuriously fail not wrapped in loop
• Function that can spuriously wake up not wrapped in loop
• Signal call in multithreaded program
• Use of signal to kill thread

Data Flow

• Code deactivated by constant false condition

 Classification of Defects by Impact

3-15

• Dead code
• Missing return statement
• Partially accessed array
• Static uncalled function
• Variable shadowing
• Write without a further read

Dynamic Memory

• Alignment changed after memory reallocation
• Mismatched alloc/dealloc functions on Windows
• Unprotected dynamic memory allocation

Good Practice

• Ambiguous declaration syntax
• Bitwise and arithmetic operation on a same data
• C++ reference to const-qualified type with subsequent modification
• C++ reference type qualified with const or volatile
• Delete of void pointer
• Hard coded buffer size
• Hard coded loop boundary
• Hard-coded object size used to manipulate memory
• Incorrect syntax of flexible array member size
• Large pass-by-value argument
• Line with more than one statement
• Missing break of switch case
• Missing overload of allocation or deallocation function
• Missing reset of a freed pointer
• Unused parameter
• Use of setjmp/longjmp

3 Manage Results

3-16

Numerical

• Float overflow
• Integer precision exceeded
• Possible invalid operation on boolean operand
• Precision loss from integer to float conversion
• Shift of a negative value
• Shift operation overflow
• Unsigned integer constant overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow

Object Oriented

• *this not returned in copy assignment operator
• Missing explicit keyword

Programming

• Accessing object with temporary lifetime
• Alternating input and output from a stream without flush or

positioning call
• Call to memset with unintended value
• Format string specifiers and arguments mismatch
• Memory comparison of float-point values
• Missing null in string array
• Misuse of a FILE object
• Misuse of structure with flexible array member
• Modification of internal buffer returned from nonreentrant

standard function
• Overlapping assignment
• Predefined macro used as an object
• Preprocessor directive in macro argument
• Qualifier removed in conversion

 Classification of Defects by Impact

3-17

• Return from computational exception signal handler
• Side effect of expression ignored
• Stream argument with possibly unintended side effects
• Universal character name from token concatenation
• Unsafe string to numeric value conversion

Security

• Function pointer assigned with absolute address
• Information leak via structure padding
• Missing case for switch condition
• Umask used with chmod-style arguments
• Use of dangerous standard function
• Use of obsolete standard function
• Vulnerable path manipulation

Static Memory

• Arithmetic operation with NULL pointer

Tainted Data

• Pointer dereference with tainted offset
• Tainted division operand
• Tainted modulo operand
• Tainted NULL or non-null-terminated string
• Tainted string format
• Use of tainted pointer

See Also

More About
• “Filter and Sort Results” on page 3-2

3 Manage Results

3-18

Bug Finder Defect Groups
In this section...
“Concurrency” on page 3-19
“Cryptography” on page 3-20
“Data flow” on page 3-20
“Dynamic Memory” on page 3-21
“Good Practice” on page 3-21
“Numerical” on page 3-21
“Object Oriented” on page 3-22
“Programming” on page 3-22
“Resource Management” on page 3-22
“Static Memory” on page 3-23
“Security” on page 3-23
“Tainted data” on page 3-23

For convenience, the defect checkers in Bug Finder are classified into various groups.

• In certain projects, you can choose to focus only on specific groups of defects. Specify
the group name for the option Find defects (-checkers). See the documentation
for Polyspace Bug Finder or Polyspace Bug Finder Server.

• When reviewing results, you can review all results of a certain group together. Filter
out other results during review. See “Manage Results”.

This topic gives an overview of the various groups.

Concurrency
These defects are related to multitasking code.

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable or call a
nonreentrant standard library function without protection.

For the specific defects, see “Concurrency Defects”.

 Bug Finder Defect Groups

3-19

Command-Line Parameter: concurrency

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For
example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

Critical sections protect shared variables from concurrent access. Polyspace expects
critical sections to follow a certain format. The critical section must lie between a call to a
lock function and a call to an unlock function.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Cryptography
These defects are related to incorrect use of cryptography routines from the OpenSSL
library. For instance:

• Use of cryptographically weak algorithms
• Absence of essential elements such as cipher key or initialization vector
• Wrong order of cryptographic operations

For the specific defects, see “Cryptography Defects”.

Command-Line Parameter: cryptography

Data flow
These defects are errors relating to how information moves throughout your code. The
defects include:

• Dead or unreachable code
• Unused code

3 Manage Results

3-20

• Non-initialized information

For the specific defects, see “Data Flow Defects”.

Command-Line Parameter: data_flow

Dynamic Memory
These defects are errors relating to memory usage when the memory is dynamically
allocated. The defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Command-Line Parameter: dynamic_memory

Good Practice
These defects allow you to observe good coding practices. The defects by themselves
might not cause a crash, but they sometimes highlight more serious logic errors in your
code. The defects also make your code vulnerable to attacks and hard to maintain.

The defects include:

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

For specific defects, see “Good Practice Defects”.

Command-Line Parameter: good_practice

Numerical
These defects are errors relating to variables in your code; their values, data types, and
usage. The defects include:

• Mathematical operations

 Bug Finder Defect Groups

3-21

• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects”.

Command-Line Parameter: numerical

Object Oriented
These defects are related to the object-oriented aspect of C++ programming. The defects
highlight class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects”.

Command-Line Parameter: object_oriented

Programming
These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects”.

Command-Line Parameter: programming

Resource Management
These defects are related to file handling. The defects include:

• Unclosed file stream

3 Manage Results

3-22

• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects”.

Command-Line Parameter: resource_management

Static Memory
These defects are errors relating to memory usage when the memory is statically
allocated. The defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects”.

Command-Line Parameter: static_memory

Security
These defects highlight places in your code which are vulnerable to hacking or other
security attacks. Many of these defects do not cause runtime errors, but instead point out
risky areas in your code. The defects include:

• Managing sensitive data
• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects”.

Command-Line Parameter: security

Tainted data
These defects highlight elements in your code which are from unsecured sources.
Malicious attackers can use input data or paths to attack your program and cause

 Bug Finder Defect Groups

3-23

failures. These defects highlight elements in your code that are vulnerable. Defects
include:

• Use of tainted variables or pointers
• Externally controlled paths

For more details about specific defects, see “Tainted Data Defects”.

Command-Line Parameter: tainted_data

See Also

3 Manage Results

3-24

Coding Rule Sets and Concepts

• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 4-2
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 4-3
• “Polyspace MISRA C:2012 Checkers” on page 4-50
• “Essential Types in MISRA C: 2012 Rules 10.x” on page 4-52
• “Unsupported MISRA C:2012 Guidelines” on page 4-55
• “Polyspace MISRA C++ Checkers” on page 4-56
• “Unsupported MISRA C++ Coding Rules” on page 4-57
• “Polyspace JSF C++ Checkers” on page 4-62
• “JSF C++ Coding Rules” on page 4-63

4

Polyspace MISRA C 2004 and MISRA AC AGC Checkers
The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.1

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 1-38
• “Software Quality Objective Subsets (AC AGC)” on page 1-44

Note The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum.

See Also

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 4-3

1. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

4 Coding Rule Sets and Concepts

4-2

MISRA C:2004 and MISRA AC AGC Coding Rules
In this section...
“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 4-3
“Troubleshooting” on page 4-3
“List of Supported Coding Rules” on page 4-4
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 4-47

Supported MISRA C:2004 and MISRA AC AGC Rules
The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

Troubleshooting
If you expect a rule violation but do not see it, check out .

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-3

List of Supported Coding Rules
• “Environment” on page 4-5
• “Language Extensions” on page 4-7
• “Documentation” on page 4-8
• “Character Sets” on page 4-8
• “Identifiers” on page 4-9
• “Types” on page 4-10
• “Constants” on page 4-12
• “Declarations and Definitions” on page 4-12
• “Initialization” on page 4-15
• “Arithmetic Type Conversion” on page 4-17
• “Pointer Type Conversion” on page 4-22
• “Expressions” on page 4-23
• “Control Statement Expressions” on page 4-27
• “Control Flow” on page 4-31
• “Switch Statements” on page 4-34
• “Functions” on page 4-35
• “Pointers and Arrays” on page 4-37
• “Structures and Unions” on page 4-38
• “Preprocessing Directives” on page 4-38
• “Standard Libraries” on page 4-43
• “Runtime Failures” on page 4-47

4 Coding Rule Sets and Concepts

4-4

Environment

N. MISRA Definition Messages in report file Polyspace Specification
1.1 All code shall conform to ISO

9899:1990 “Programming
languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC
9899/COR2:1996.

The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI® C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else'
violates ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

All the supported extensions
lead to a violation of this
MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-5

N. MISRA Definition Messages in report file Polyspace Specification
1.1
(cont.)

 The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C90 forbids 'long
long int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long
long integer constants.

• Keyword 'inline' should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

• Too many nesting levels
of #includes: N1. The
limit is N0.

• Too many macro
definitions: N1. The limit
is N0.

• Too many nesting levels
for control flow: N1. The
limit is N0.

4 Coding Rule Sets and Concepts

4-6

N. MISRA Definition Messages in report file Polyspace Specification
• Too many enumeration

constants: N1. The limit is
N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Specification
2.1 Assembly language shall be

encapsulated and isolated.
Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in the
following:

• asm functions or asm
pragma

• Macros
2.2 Source code shall only use /*

*/ style comments
C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

Note: This rule cannot be
annotated in the source
code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source
code.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-7

Documentation

Rule MISRA Definition Messages in report file Polyspace Specification
3.4 All uses of the #pragma

directive shall be documented
and explained.

All uses of the #pragma
directive shall be documented
and explained.

To check this rule, you must
list the pragmas that are
allowed in source files by
using the option Allowed
pragmas (-allowed-
pragmas). If Polyspace finds
a pragma not in the allowed
pragma list, a violation is
raised.For more on analysis
options, see the
documentation for Polyspace
Bug Finder or Polyspace Bug
Finder Server

Character Sets

N. MISRA Definition Messages in report file Polyspace Specification
4.1 Only those escape sequences

which are defined in the ISO
C standard shall be used.

\<character> is not an ISO C
escape sequence Only those
escape sequences which are
defined in the ISO C
standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

4 Coding Rule Sets and Concepts

4-8

Identifiers

N. MISRA Definition Messages in report file Polyspace Specification
5.1 Identifiers (internal and

external) shall not rely on the
significance of more than 31
characters

Identifier 'XX' should not rely
on the significance of more
than 31 characters.

All identifiers (global, static
and local) are checked.

For easier review, the rule
checker shows all identifiers
that have the same first 31
characters as one rule
violation. You can see all
instances of conflicting
identifier names in the event
history of that rule violation.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide that
identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{typedef name}'%s' should
not be reused. (already used
as {typedef name} at %s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not
be reused. (already used as
{tag name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static storage
duration should be reused.

{static identifier/parameter
name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

Warning when a static name
is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-9

N. MISRA Definition Messages in report file Polyspace Specification
5.6 No identifier in one name

space should have the same
spelling as an identifier in
another name space, with the
exception of structure and
union member names.

{member name}'%s' should
not be reused. (already used
as {member name} at
%s:%d)

Warning when an idf in a
namespace is reused in
another namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not
be reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have
local variables with the
same name

• A function has a local
variable that has the
same name as a
parameter of another
function

Types

N. MISRA Definition Messages in report file Polyspace Specification
6.1 The plain char type shall be

used only for the storage and
use of character values

Only permissible operators
on plain chars are '=', '=='
or '!=' operators, explicit
casts to integral types and '?'
(for the 2nd and 3rd
operands)

Warning when a plain char is
used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

4 Coding Rule Sets and Concepts

4-10

N. MISRA Definition Messages in report file Polyspace Specification
6.2 Signed and unsigned char

type shall be used only for the
storage and use of numeric
values.

• Value of type plain char is
implicitly converted to
signed char.

• Value of type plain char is
implicitly converted to
unsigned char.

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

Warning if value of type plain
char is implicitly converted
to value of type signed char
or unsigned char.

6.3 typedefs that indicate size and
signedness should be used in
place of the basic types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be defined
to be of type unsigned int or
signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-11

Constants

N. MISRA Definition Messages in report file Polyspace Specification
7.1 Octal constants (other than

zero) and octal escape
sequences shall not be used.

• Octal constants other than
zero and octal escape
sequences shall not be
used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Specification
8.1 Functions shall have

prototype declarations and
the prototype shall be visible
at both the function definition
and call.

• Function XX has no
complete prototype visible
at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call must
be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function 'XX'
incompatible with its
declaration.

Assumes that rule 8.1 is not
violated. The rule is restricted
to compatible types. Can be
turned to Off

4 Coding Rule Sets and Concepts

4-12

N. MISRA Definition Messages in report file Polyspace Specification
8.4 If objects or functions are

declared more than once
their types shall be
compatible.

• If objects or functions are
declared more than once
their types shall be
compatible.

• Global declaration of 'XX'
function has incompatible
type with its definition.

• Global declaration of 'XX'
variable has incompatible
type with its definition.

Violations of this rule might
be generated during the link
phase.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not
be defined in a header file.

• Fragment of function
should not be defined in a
header file.

Tentative definitions are
considered as definitions. For
objects with file scope,
tentative definitions are
declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the
static specifier

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be
declared at file scope.

This rule maps to ISO/IEC TS
17961 ID addrescape.

8.7 Objects shall be defined at
block scope if they are only
accessed from within a single
function

Object 'XX' should be
declared at block scope.

Restricted to static objects.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-13

N. MISRA Definition Messages in report file Polyspace Specification
8.8 An external object or function

shall be declared in one file
and only one file

Function/Object 'XX' has
external declarations in
multiple files.

Restricted to explicit extern
declarations (tentative
definitions are ignored).

Polyspace considers that
variables or functions
declared extern in a non-
header file violate this rule.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.9 Definition: An identifier with
external linkage shall have
exactly one external
definition.

• Procedure/Global variable
XX multiply defined.

• Forbidden multiple
tentative definitions for
object XX

• Global variable has
multiple tentative
definitions

• Undefined global variable
XX

The checker flags multiple
definitions only if the
definitions occur in different
files.

No warnings appear on
predefined symbols.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX should
have internal linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

4 Coding Rule Sets and Concepts

4-14

N. MISRA Definition Messages in report file Polyspace Specification
8.12 When an array is declared

with external linkage, its size
shall be stated explicitly or
defined implicitly by
initialization

Size of array 'XX' should be
explicitly stated.

Initialization

N. MISRA Definition Messages in report file Polyspace Specification
9.1 All automatic variables shall

have been assigned a value
before being used.

 Checked during code
analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results. In
Code Prover, you can also
see a difference in results
based on your choice for the
option Verification
level (-to). See the
documentation for Polyspace
Bug Finder or Polyspace Bug
Finder Server for more on
analysis options and how to
check for coding standard
violations..

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-15

N. MISRA Definition Messages in report file Polyspace Specification
9.3 In an enumerator list, the =

construct shall not be used to
explicitly initialize members
other than the first, unless all
items are explicitly initialized.

In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless
all items are explicitly
initialized.

4 Coding Rule Sets and Concepts

4-16

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification
10.1 The value of an expression of

integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of the
expression of underlying
type XX to the type XX
that is not a wider integer
type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

• Implicit conversion of the
binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

• Implicit conversion of the
binary right hand
operand of underlying
type XX to XX that is not a
wider integer type of the
same signedness or
Implicit conversion of the
binary ? left hand
operand of underlying
type XX to XX, but it is a
complex expression.

• Implicit conversion of
complex integer
expression of underlying
type XX to XX.

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base
types.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or
option setting).

The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield width
is not token into account and
it assumes that only signed |
unsigned int are used for
bitfield (Rule 6.4).

This rule violation is not
produced on operations
involving pointers.

No violation reported when:

• The implicit conversion is
a type widening, without

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-17

N. MISRA Definition Messages in report file Polyspace Specification
• Implicit conversion of

non-constant integer
expression of underlying
type XX in function return
whose expected type is
XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX as argument of
function whose
corresponding parameter
type is XX.

change of signedness of
integer

• The expression is an
argument expression or a
return expression

No violation reported when
the following are true:

• Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness of
integer.

• The conversion does not
change the
representation of the
constant value or the
result of the operation.

• The expression is an
argument expression or a
return expression or an
operand expression of a
non-bitwise operator.

Conversions of constants are
not reported for these cases
to avoid flagging too many
violations. If the constant can
be represented in both the
original and converted type,
the conversion is less of an
issue.

4 Coding Rule Sets and Concepts

4-18

N. MISRA Definition Messages in report file Polyspace Specification
10.2 The value of an expression of

floating type shall not be
implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to XX
that is not a wider
floating type.

• Implicit conversion of the
binary ? right hand
operand from XX to XX,
but it is a complex
expression.

• Implicit conversion of the
binary ? right hand
operand from XX to XX
that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, but it is a
complex expression.

• Implicit conversion of
complex floating
expression from XX to XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of XX
type as argument of
function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or T2
= T1.

No violation reported when:

• The implicit conversion is
a type widening

• The expression is an
argument expression or a
return expression.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-19

N. MISRA Definition Messages in report file Polyspace Specification
10.3 The value of a complex

expression of integer type
may only be cast to a type
that is narrower and of the
same signedness as the
underlying type of the
expression

Complex expression of
underlying type XX may only
be cast to narrower integer
type of same signedness,
however the destination type
is XX.

• The rule checker raises a
defect only if the result of
a composite expression is
cast to a different or
wider essential type.

For instance, in this
example, a violation is
shown in the first
assignment to i but not
the second. In the first
assignment, a composite
expression i+1 is directly
cast from a signed to an
unsigned type. In the
second assignment, the
composite expression is
first cast to the same type
and then the result is cast
to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1);
/* Noncompliant */
i = (uint8_T)((int32_T)(i+1));
 /* Compliant */

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2 is
on the right hand of T1 or
T1 = T2. The same
methodology is applied on
the unsigned version of
base types.

4 Coding Rule Sets and Concepts

4-20

N. MISRA Definition Messages in report file Polyspace Specification
• An expression of bool or

enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

• The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed,
unsigned int are used for
bitfield (Rule 6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination type
is XX.

ANSI C base types order
(float, double) defines that
T1 is narrower than T2 if T2
is on the right hand of T1 or
T2 = T1.

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-21

N. MISRA Definition Messages in report file Polyspace Specification
10.6 The “U” suffix shall be applied

to all constants of unsigned
types

No explicit 'U suffix on
constants of an unsigned
type.

 Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size
of the int and long int
data types is 32 bits, the
coding rule checker will
report a violation of rule 10.6
for the following line:

int a = 2147483648;

There is a difference
between decimal and
hexadecimal constants when
int and long int are not
the same size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification
11.1 Conversion shall not be

performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

11.2 Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

This rule maps to ISO/IEC
TS 17961 ID alignconv.

4 Coding Rule Sets and Concepts

4-22

N. MISRA Definition Messages in report file Polyspace Specification
11.3 A cast should not be

performed between a pointer
type and an integral type

A cast should not be
performed between a pointer
type and an integral type.

Exception on zero constant.
Extended to all conversions

This rule maps to ISO/IEC
TS 17961 ID alignconv.

11.4 A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

11.5 A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Specification
12.1 Limited dependence should

be placed on C's operator
precedence rules in
expressions

Limited dependence should
be placed on C's operator
precedence rules in
expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of 'sym'
depends on the order of
evaluation.

• The value of volatile
'sym' depends on the
order of evaluation
because of multiple
accesses.

Rule 12.2 check assumes that
no assignment in expressions
that yield a Boolean values
(rule 13.1).

The expression is a simple
expression of symbols. i = i
++; is a violation, but tab[2]
= tab[2]++; is not a
violation.

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-23

N. MISRA Definition Messages in report file Polyspace Specification
12.4 The right hand operand of a

logical && or || operator shall
not contain side effects.

The right hand operand of a
logical && or || operator shall
not contain side effects.

No warning on volatile
accesses

12.5 The operands of a logical &&
or || shall be primary-
expressions.

• operand of logical && is
not a primary expression

• operand of logical || is not
a primary expression

• The operands of a logical
&& or || shall be primary-
expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

4 Coding Rule Sets and Concepts

4-24

N. MISRA Definition Messages in report file Polyspace Specification
12.6 Operands of logical operators

(&&, || and !) should be
effectively Boolean.
Expression that are
effectively Boolean should not
be used as operands to
operators other than (&&, ||
or !).

• Operand of '!' logical
operator should be
effectively Boolean.

• Left operand of '%s'
logical operator should be
effectively Boolean.

• Right operand of '%s'
logical operator should be
effectively Boolean.

• %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than '&&',
'||', '!', '=', '==', '!=' and
'?:'.

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data type,
the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-25

N. MISRA Definition Messages in report file Polyspace Specification
number of warnings
generated.

12.7 Bitwise operators shall not be
applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/&]
operator applied on an
expression whose
underlying type is signed.

• Bitwise ~ on operand of
signed underlying type XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to fit
into a 64 bits signed
number

12.8 The right hand operand of a
shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative
• shift amount is bigger

than 64
• Bitwise [<< >>] count out

of range [0 ..X] (width of
the underlying type XX of
the left hand operand - 1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide so
that valid shift range is
between 0 and 63

Check is also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator
shall not be applied to an
expression whose underlying
type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied to
an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to fit
into a 64 bits signed
number

12.10 The comma operator shall not
be used.

The comma operator shall not
be used.

4 Coding Rule Sets and Concepts

4-26

N. MISRA Definition Messages in report file Polyspace Specification
12.11 Evaluation of constant

unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer expressions
should not lead to wrap-
around.

12.12 The underlying bit
representations of floating-
point values shall not be used.

The underlying bit
representations of floating-
point values shall not be used.

Warning when:

• A float pointer is cast as a
pointer to another data
type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {
 float f;
 int i;
} …

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Specification
13.1 Assignment operators shall

not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-27

N. MISRA Definition Messages in report file Polyspace Specification
13.2 Tests of a value against zero

should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example: if
(2)

The use of the option -
boolean-types may
increase or decrease the
number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests only.

13.4 The controlling expression of
a for statement shall not
contain any objects of floating
type

The controlling expression of
a for statement shall not
contain any objects of floating
type

If for index is a variable
symbol, checked that it is not
a float.

4 Coding Rule Sets and Concepts

4-28

N. MISRA Definition Messages in report file Polyspace Specification
13.5 The three expressions of a for

statement shall be concerned
only with loop control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should be
an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

Checked if the for loop index
(V) is a variable symbol;
checked if V is the last
assigned variable in the first
expression (if present).
Checked if, in first
expression, if present, is
assignment of V; checked if in
2nd expression, if present,
must be a comparison of V;
Checked if in 3rd expression,
if present, must be an
assignment of V.

13.6 Numeric variables being used
within a for loop for iteration
counting should not be
modified in the body of the
loop.

Numeric variables being used
within a for loop for iteration
counting should not be
modified in the body of the
loop.

Detect only direct
assignments if the for loop
index is known and if it is a
variable symbol.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-29

N. MISRA Definition Messages in report file Polyspace Specification
13.7 Boolean operations whose

results are invariant shall not
be permitted

• Boolean operations whose
results are invariant shall
not be permitted.
Expression is always true.

• Boolean operations whose
results are invariant shall
not be permitted.
Expression is always false.

• Boolean operations whose
results are invariant shall
not be permitted.

During compilation, check
comparisons with at least one
constant operand.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

• Bug Finder flags some
violations of this rule
through the Dead code
and Useless if
checkers.

• Code Prover does not use
gray code to flag violations
of this rule.

In Code Prover, you can also
see a difference in results
based on your choice for the
option Verification
level (-to). See the
documentation for Polyspace
Bug Finder or Polyspace Bug
Finder Server for more on
analysis options and how to
check for coding standard
violations...

The rule violation appears
when you check whether an
enum variable value lies
between its lower and upper
bound. The violation appears
even if you increment or
decrement the variable
outside its bounds, for

4 Coding Rule Sets and Concepts

4-30

N. MISRA Definition Messages in report file Polyspace Specification
instance, in this for loop
condition:

enum ec {RED, BLUE, GREEN} col;
for(col=RED; col<=GREEN; col++)
{}

An enum variable can
potentially wrap around when
incremented outside its range
and the loop condition can be
always true. To avoid the rule
violation, you can cast the
enum to an integer before the
comparison, for instance:

enum ec {RED, BLUE, GREEN} col;
for(col=RED; (int)col<=GREEN; col++)
{}

Control Flow

N. MISRA Definition Messages in report file Polyspace Specification
14.1 There shall be no unreachable

code.
There shall be no
unreachable code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at least one side
effect however executed, or
cause control flow to change

All non-null statements shall
either:

• have at least one side
effect however executed,
or

• cause control flow to
change

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-31

N. MISRA Definition Messages in report file Polyspace Specification
14.3 Before preprocessing, a null

statement shall occur on a
line by itself; it may be
followed by a comment
provided that the first
character following the null
statement is a white-space
character.

A null statement shall
appear on a line by itself

We assume that a ';' is a null
statement when it is the first
character on a line
(excluding comments). The
rule is violated when:

• there are some comments
before it on the same
line.

• there is a comment
immediately after it

• there is something else
than a comment after the
';' on the same line.

14.4 The goto statement shall not
be used.

The goto statement shall not
be used.

14.5 The continue statement shall
not be used.

The continue statement shall
not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for loop
termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a
single point of exit at the end
of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

4 Coding Rule Sets and Concepts

4-32

N. MISRA Definition Messages in report file Polyspace Specification
14.9 An if (expression) construct

shall be followed by a
compound statement. The
else keyword shall be
followed by either a
compound statement, or
another if statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall be
followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs
should contain a final else
clause.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-33

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification
15.0 The MISRA C switch syntax

shall be used.
switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example, the
rule is displayed in the log file
at line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1: ...

The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.

This rule is not considered as
a required rule in the MISRA
C:2004 rules for generated
code. In generated code, if
you find a violation of rule
15.0 that does not
simultaneously violate a later
rule in this group, justify the
violation with appropriate
comments.

4 Coding Rule Sets and Concepts

4-34

N. MISRA Definition Messages in report file Polyspace Specification
15.1 A switch label shall only be

used when the most closely-
enclosing compound
statement is the body of a
switch statement

A switch label shall only be
used when the most closely-
enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each non-
compliant case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the default
clause

15.4 A switch expression should
not represent a value that is
effectively Boolean

A switch expression should
not represent a value that is
effectively Boolean

The use of the option -
boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement shall
have at least one case clause

Every switch statement shall
have at least one case clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification
16.1 Functions shall not be defined

with variable numbers of
arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Use the call graph in
Polyspace Code Prover).
Polyspace also partially
checks this rule during the
compilation phase.

16.3 Identifiers shall be given for
all of the parameters in a
function prototype
declaration.

Identifiers shall be given for
all of the parameters in a
function prototype
declaration.

Assumes Rule 8.6 is not
violated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-35

N. MISRA Definition Messages in report file Polyspace Specification
16.4 The identifiers used in the

declaration and definition of a
function shall be identical.

The identifiers used in the
declaration and definition of a
function shall be identical.

Assumes that rules 8.8, 8.1
and 16.3 are not violated.

All occurrences are detected.
16.5 Functions with no parameters

shall be declared with
parameter type void.

Functions with no parameters
shall be declared with
parameter type void.

Definitions are also checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

This rule maps to ISO/IEC TS
17961 ID argcomp.

16.7 A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is passed
to a call of a function that is
declared with a const
pointer parameter.

16.8 All exit paths from a function
with non-void return type
shall have an explicit return
statement with an expression.

Missing return value for non-
void function XX.

Warning when a non-void
function is not terminated
with an unconditional return
with an expression.

16.9 A function identifier shall only
be used with either a
preceding &, or with a
parenthesized parameter list,
which may be empty.

Function identifier XX should
be preceded by a & or
followed by a parameter list.

4 Coding Rule Sets and Concepts

4-36

N. MISRA Definition Messages in report file Polyspace Specification
16.10 If a function returns error

information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and the
returned value is ignored.

No warning if the result of
the call is cast to void.

No check performed for calls
of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Specification
17.1 Pointer arithmetic shall only

be applied to pointers that
address an array or array
element.

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

17.2 Pointer subtraction shall only
be applied to pointers that
address elements of the same
array

Pointer subtraction shall only
be applied to pointers that
address elements of the same
array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on:

• Operations on pointers. (p
+I, I+p, and p-I, where p
is a pointer and I an
integer).

• Array indexing on
nonarray pointers.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-37

N. MISRA Definition Messages in report file Polyspace Specification
17.5 A type should not contain

more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not
be assigned to an object that
may persist after the object
has ceased to exist.

Pointer to a parameter is an
illegal return value. Pointer to
a local is an illegal return
value.

Warning when assigning
address to a global variable,
returning a local variable
address, or returning a
parameter address.

This rule maps to ISO/IEC TS
17961 ID accfree.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Specification
18.1 All structure or union types

shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

18.2 An object shall not be
assigned to an overlapping
object.

• An object shall not be
assigned to an overlapping
object.

• Destination and source of
XX overlap, the behavior is
undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Specification
19.1 #include statements in a file

shall only be preceded by
other preprocessors
directives or comments

#include statements in a file
shall only be preceded by
other preprocessors
directives or comments

A message is displayed when
a #include directive is
preceded by other things than
preprocessor directives,
comments, spaces or “new
lines”.

4 Coding Rule Sets and Concepts

4-38

N. MISRA Definition Messages in report file Polyspace Specification
19.2 Nonstandard characters

should not occur in header
file names in #include
directives

• A message is displayed on
characters ', " or /*
between < and > in
#include <filename>

• A message is displayed on
characters ', or /* between
" and " in #include
"filename"

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-39

N. MISRA Definition Messages in report file Polyspace Specification
19.4 C macros shall only expand to

a braced initializer, a
constant, a parenthesized
expression, a type qualifier, a
storage class specifier, or a
do-while-zero construct.

Macro '<name>' does not
expand to a compliant
construct.

We assume that a macro
definition does not violate this
rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct
(not necessarily an
expression)

• a number
• a character constant
• a string constant (can be

the result of the
concatenation of string
field arguments and literal
strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct
19.5 Macros shall not be #defined

and #undefd within a block.
• Macros shall not be

#define’d within a block.
• Macros shall not be

#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.
19.7 A function should be used in

preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

4 Coding Rule Sets and Concepts

4-40

N. MISRA Definition Messages in report file Polyspace Specification
19.8 A function-like macro shall

not be invoked without all of
its arguments

• arguments given to macro
'<name>'

• macro '<name>' used
without args.

• macro '<name>' used with
just one arg.

• macro '<name>' used with
too many (<number>)
args.

19.9 Arguments to a function-like
macro shall not contain
tokens that look like
preprocessing directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the '#'
character appears in a macro
argument (outside a string or
character constant)

19.10 In the definition of a function-
like macro each instance of a
parameter shall be enclosed
in parentheses unless it is
used as the operand of # or
##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter, the
following instances of x as an
operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not
generate a warning if a
parameter is reused as an
argument of a function or
function-like macro. For
example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x,
or ,x) or ,x,.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-41

N. MISRA Definition Messages in report file Polyspace Specification
19.11 All macro identifiers in

preprocessor directives shall
be defined before use, except
in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence of
the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions of
macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used in
one of the two standard
forms.

'defined' without an identifier.

19.15 Precautions shall be taken in
order to prevent the contents
of a header file being
included twice.

Precautions shall be taken in
order to prevent multiple
inclusions.

When a header file is
formatted as,

#ifndef <control macro>
#define <control macro>
<contents> #endif

or,

#ifndef <control macro>
#error ...
#else
#define <control macro>
<contents> #endif

it is assumed that precautions
have been taken to prevent
multiple inclusions.
Otherwise, a violation of this
MISRA rule is detected.

4 Coding Rule Sets and Concepts

4-42

N. MISRA Definition Messages in report file Polyspace Specification
19.16 Preprocessing directives shall

be syntactically meaningful
even when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if or #ifdef directive to
which they are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if'

conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Specification
20.1 Reserved identifiers, macros

and functions in the standard
library, shall not be defined,
redefined or undefined.

• The macro '<name> shall
not be redefined.

• The macro '<name> shall
not be undefined.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-43

N. MISRA Definition Messages in report file Polyspace Specification
20.2 The names of standard library

macros, objects and functions
shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1.

Tentative definitions are
considered as definitions. For
objects with file scope,
tentative definitions are
declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the
static specifier

4 Coding Rule Sets and Concepts

4-44

N. MISRA Definition Messages in report file Polyspace Specification
20.3 The validity of values passed

to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

• Argument is a local
variable

• Local variable is not tested
between last assignment
and call to the library
function

• Library function is a
common mathematical
function

• Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

Bug Finder and Code Prover
check this rule differently.
The analysis can produce
different results.

20.4 Dynamic heap memory
allocation shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-45

N. MISRA Definition Messages in report file Polyspace Specification
20.6 The macro offsetof, in library

<stddef.h>, shall not be used.
• The macro '<name> shall

not be used.
• Identifier XX should not be

used.

Assumes that rule 20.2 is not
violated

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling facilities
of <signal.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case some of the signal
functions are actually macros
and are expanded in the code,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the input/output
library functions are actually
macros and are expanded in
the code, this rule is detected
as violated. Assumes that rule
20.2 is not violated

20.10 The library functions atof,
atoi and atoll from library
<stdlib.h> shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the atof, atoi and atoll
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort,
exit, getenv and system from
library <stdlib.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the abort, exit, getenv
and system functions are
actually macros and are
expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

4 Coding Rule Sets and Concepts

4-46

N. MISRA Definition Messages in report file Polyspace Specification
20.12 The time handling functions

of library <time.h> shall not
be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the time handling
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Specification
21.1 Minimization of runtime

failures shall be ensured by
the use of at least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks
to handle runtime faults.

 Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

In Code Prover, you can also
see a difference in results
based on your choice for the
option Verification
level (-to). See the
documentation for Polyspace
Bug Finder or Polyspace Bug
Finder Server for more on
analysis options and how to
check for coding standard
violations...

Unsupported MISRA C:2004 and MISRA AC AGC Rules
The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of
MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-47

Environment

Rule Description Polyspace Specification
1.2 (Required) No reliance shall be placed on

undefined or unspecified behavior
Not statically checkable unless the data
dynamic properties is taken into
account

1.3 (Required) Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers (internal
and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.

To observe this rule, check your
compiler documentation.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your
compiler documentation.

Language Extensions

Rule Description Polyspace Specification
2.4 (Advisory) Sections of code should not be

“commented out”
One way a tool can check this rule is to
determine if the code compiles when
commented out sections are
uncommented. However, such checking
can be expensive and inaccurate.

4 Coding Rule Sets and Concepts

4-48

Documentation

Rule Description Polyspace Specification
3.1 (Required) All usage of implementation-defined

behavior shall be documented.
To observe this rule, check your
compiler documentation. Error
detection is based on undefined
behavior, according to choices made for
implementation- defined constructions.

3.2 (Required) The character set and the
corresponding encoding shall be
documented.

To observe this rule, check your
compiler documentation.

3.3 (Advisory) The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

To observe this rule, check your
compiler documentation.

3.5 (Required) The implementation-defined behavior
and packing of bitfields shall be
documented if being relied upon.

To observe this rule, check your
compiler documentation.

3.6 (Required) All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

To observe this rule, check your
compiler documentation.

Structures and Unions

Rule Description Polyspace Specification
18.3 (Required) An area of memory shall not be reused

for unrelated purposes.
"purpose" is functional design issue.

 MISRA C:2004 and MISRA AC AGC Coding Rules

4-49

Polyspace MISRA C:2012 Checkers
The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012 coding
standard.2

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

Polyspace Bug Finder can check all the MISRA C:2012 rules and most MISRA C:2012
directives. Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Dir 4.7, 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

Each guideline is categorized into one of these three categories: mandatory, required, or
advisory. When you set up rule checking, you can select subsets of these categories to
check. For automatically generated code, some rules change categories, including to one
additional category: readability. The Use generated code requirements (-
misra3-agc-mode) option activates the categorization for automatically generated
code. For more on analysis options, see the documentation for Polyspace Bug Finder or
Polyspace Bug Finder Server.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 1-48.

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

4 Coding Rule Sets and Concepts

4-50

See Also

See Also

More About
• “MISRA C:2012 Directives and Rules”

 See Also

4-51

Essential Types in MISRA C: 2012 Rules 10.x
MISRA C: 2012 rules 10.x classify data types in categories. The rules treat data types in
the same category as essentially similar.

For instance, the data types float, double and long double are considered as
essentially floating. Rule 10.1 states that the % operation must not have essentially
floating operands. This statement implies that the operands cannot have one of these
three data types: float, double and long double.

Categories of Essential Types
The essential types fall in these categories:

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must
specify this type name before coding rules checking. For
more information, see Effective boolean types (-
boolean-tyoes). For more on analysis options, see the
documentation for Polyspace Bug Finder or Polyspace Bug
Finder Server .

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

How MISRA C: 2012 Uses Essential Types
These rules use essential types in their statements:

4 Coding Rule Sets and Concepts

4-52

• MISRA C:2012 Rule 10.1: Operands shall not be of an inappropriate essential type.

For instance, the right operand of the << or >> operator must be essentially unsigned.
Otherwise, negative values can cause undefined behavior.

• MISRA C:2012 Rule 10.2: Expressions of essentially character type shall not be
used inappropriately in addition and subtraction operations.

For instance, the type char does not represent numeric values. Do not use a variable
of this type in addition and subtraction operations.

• MISRA C:2012 Rule 10.3: The value of an expression shall not be assigned to an
object with a narrower essential type or of a different essential type category.

For instance, do not assign a variable of data type double to a variable with the
narrower data type float.

• MISRA C:2012 Rule 10.4: Both operands of an operator in which the usual
arithmetic conversions are performed shall have the same essential type category.

For instance, do not perform an addition operation with a signed int operand, which
belongs to the essentially signed category, and an unsigned int operand, which
belongs to the essentially unsigned category.

• MISRA C:2012 Rule 10.5: The value of an expression should not be cast to an
inappropriate essential type.

For instance, do not perform a cast between essentially floating types and essentially
character types.

• MISRA C:2012 Rule 10.6: The value of a composite expression shall not be
assigned to an object with wider essential type.

For instance, if a multiplication, binary addition or bitwise operation involves unsigned
char operands, do not assign the result to a variable having the wider type unsigned
int.

• MISRA C:2012 Rule 10.7: If a composite expression is used as one operand of an
operator in which the usual arithmetic conversions are performed then the other
operand shall not have wider essential type.

For instance, if one operand of an addition operation is a composite expression with
two unsigned char operands, the other operand must not have the wider type
unsigned int.

 Essential Types in MISRA C: 2012 Rules 10.x

4-53

See Also

More About
• “MISRA C:2012 Directives and Rules”

4 Coding Rule Sets and Concepts

4-54

Unsupported MISRA C:2012 Guidelines
The Polyspace coding rules checker does not check the following MISRA C:2012
directives. These directives are not checked either in Bug Finder or Code Prover. These
directives cannot be enforced because they are outside the scope of Polyspace software.
These guidelines concern documentation, dynamic aspects, or functional aspects of
MISRA rules.

For the list of supported rules and directives, see “MISRA C:2012 Directives and Rules”.

Number Category AGC
Category

Definition

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

Directive
4.4

Advisory Advisory Sections of code should not be “commented out”

Directive
4.12

Required Required Dynamic memory allocation shall not be used

See Also

More About
• “MISRA C:2012 Directives and Rules”

 Unsupported MISRA C:2012 Guidelines

4-55

Polyspace MISRA C++ Checkers
The Polyspace MISRA C++ checker helps you comply with the MISRA C++:2008 coding
standard.3

When MISRA C++ rules are violated, the Polyspace software provides messages with
information about why the code violates the rule. Most violations are found during the
compile phase of an analysis. The MISRA C++ checker can check 202 of the 230 MISRA
C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 1-57.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for
the use of the C++ language in critical systems."

See Also

More About
• “MISRA C++:2008 Rules”

3. MISRA is a registered trademark of MIRA Ltd., held on behalf of the MISRA Consortium.

4 Coding Rule Sets and Concepts

4-56

Unsupported MISRA C++ Coding Rules

In this section...
“Language Independent Issues” on page 4-57
“General” on page 4-58
“Lexical Conventions” on page 4-58
“Expressions” on page 4-59
“Declarations” on page 4-59
“Classes” on page 4-60
“Templates” on page 4-60
“Exception Handling” on page 4-60
“Library Introduction” on page 4-61

Polyspace does not check the following MISRAC++ coding rules. These rules are not
checked either in Bug Finder or Code Prover. Some of these rules cannot be enforced
because they are outside the scope of Polyspace software. The rules concern
documentation, dynamic aspects, or functional aspects of MISRA rules.

For the list of supported rules, see “MISRA C++:2008 Rules”.

Language Independent Issues
N. Category MISRA Definition Polyspace Specification
0-1-4 Required A project shall not contain non-

volatile POD variables having only
one use.

0-1-6 Required A project shall not contain instances
of non-volatile variables being given
values that are never subsequently
used.

0-1-8 Required All functions with void return type
shall have external side effects.

 Unsupported MISRA C++ Coding Rules

4-57

N. Category MISRA Definition Polyspace Specification
0-3-1 Required Minimization of run-time failures

shall be ensured by the use of at
least one of: (a) static analysis tools/
techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 Required If a function generates error
information, then that error
information shall be tested.

0-4-1 Document Use of scaled-integer or fixed-point
arithmetic shall be documented.

To observe this rule, check your
compiler documentation.

0-4-2 Document Use of floating-point arithmetic shall
be documented.

To observe this rule, check your
compiler documentation.

0-4-3 Document Floating-point implementations shall
comply with a defined floating-point
standard.

To observe this rule, check your
compiler documentation.

General
N. Category MISRA Definition Polyspace Specification
1-0-2 Document Multiple compilers shall only be used

if they have a common, defined
interface.

To observe this rule, check your
compiler documentation.

1-0-3 Document The implementation of integer
division in the chosen compiler shall
be determined and documented.

To observe this rule, check your
compiler documentation.

Lexical Conventions
N. Category MISRA Definition Polyspace Specification
2-2-1 Document The character set and the

corresponding encoding shall be
documented.

To observe this rule, check your
compiler documentation.

4 Coding Rule Sets and Concepts

4-58

N. Category MISRA Definition Polyspace Specification
2-7-2 Required Sections of code shall not be

"commented out" using C-style
comments.

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such
checking can be expensive and
inaccurate.

2-7-3 Advisory Sections of code should not be
"commented out" using C++
comments.

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such
checking can be expensive and
inaccurate.

Expressions
N. Category MISRA Definition Polyspace Specification
5-0-16 Required A pointer operand and any pointer

resulting from pointer arithmetic
using that operand shall both
address elements of the same array.

5-17-1 Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations
N. MISRA Definition Polyspace Specification
7-2-1 Required An expression with enum underlying

type shall only have values
corresponding to the enumerators of
the enumeration.

7-4-1 Document All usage of assembler shall be
documented.

To observe this rule, check your
compiler documentation.

 Unsupported MISRA C++ Coding Rules

4-59

Classes
N. Category MISRA Definition Polyspace Specification
9-6-1 Document When the absolute positioning of bits

representing a bit-field is required,
then the behavior and packing of bit-
fields shall be documented.

To observe this rule, check your
compiler documentation.

Templates
N. MISRA Definition Polyspace Specification
14-5-1 Required A non-member generic function shall

only be declared in a namespace that
is not an associated namespace.

14-7-1 Required All class templates, function
templates, class template member
functions and class template static
members shall be instantiated at
least once.

14-7-2 Required For any given template
specialization, an explicit
instantiation of the template with the
template-arguments used in the
specialization shall not render the
program ill-formed.

Exception Handling
N. Category MISRA Definition Polyspace Specification
15-0-1 Document Exceptions shall only be used for

error handling.
To observe this rule, check your
compiler documentation.

15-1-1 Required The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown.

4 Coding Rule Sets and Concepts

4-60

N. Category MISRA Definition Polyspace Specification
15-3-1 Required Exceptions shall be raised only after

start-up and before termination of
the program.

15-3-4 Required Each exception explicitly thrown in
the code shall have a handler of a
compatible type in all call paths that
could lead to that point.

Library Introduction
N. Category MISRA Definition Polyspace Specification
17-0-3 Required The names of standard library

functions shall not be overridden.

17-0-4 Required All library code shall conform to
MISRA C++.

To observe this rule, check your
compiler documentation.

See Also

More About
• “MISRA C++:2008 Rules”

 See Also

4-61

Polyspace JSF C++ Checkers
The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve the
robustness of C++ code, and improve maintainability.

4

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace
software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note The Polyspace JSF C++ checker is based on JSF++:2005.

See Also

4. JSF and Joint Strike Fighter are Lockheed Martin.

4 Coding Rule Sets and Concepts

4-62

JSF C++ Coding Rules

Supported JSF C++ Coding Rules
Code Size and Complexity

N. JSF++ Definition Polyspace Specification
1 Any one function (or method) will contain no

more than 200 logical source lines of code
(L-SLOCs).

Message in report file:

<function name> has <num> logical
source lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic
complexity number equal to <num>.

Environment

N. JSF++ Definition Polyspace Specification
8 All code shall conform to ISO/IEC

14882:2002(E) standard C++.
Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%,

%>, <:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in -compiler iso.

13 Multi-byte characters and wide string literals
will not be used.

Report L'c', L"string", and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

 JSF C++ Coding Rules

4-63

N. JSF++ Definition Polyspace Specification
15 Provision shall be made for run-time

checking (defensive programming).
Done with checks in the software.

Libraries

N. JSF++ Definition Polyspace Specification
17 The error indicator errno shall not be

used.
errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external "C"
linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used as
a macro or a global with external "C"
linkage.

21 The signal handling facilities of <signal.h>
shall not be used.

signal and raise should not be used as a
macro or a global with external "C" linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used as
a macro or a global with external "C"
linkage.

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime,
ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

4 Coding Rule Sets and Concepts

4-64

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification
26 Only the following preprocessor directives

shall be used: #ifndef, #define, #endif,
#include.

27 #ifndef, #define and #endif will be used
to prevent multiple inclusions of the same
header file. Other techniques to prevent the
multiple inclusions of header files will not
be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in AV
Rule 27 to prevent multiple inclusions of the
same header file.

Detects any use that does not comply with
AV Rule 27. Assuming 35/27 is not violated,
reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition of a
macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor
directive shall not be used to create inline
macros.

• 29.2 : Inline functions shall be used
instead of inline macros.

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be applied
to variable declarations to specify constant
values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used to
guard for multiple inclusion, assuming that
rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

 JSF C++ Coding Rules

4-65

Header Files

N. JSF++ Definition Polyspace Specification
33 The #include directive shall use the

<filename.h> notation to include header
files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-
const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Polyspace Specification
40 Every implementation file shall include the

header files that uniquely define the inline
functions, types, and templates used.

Reports when type, template, or inline
function is defined in source file.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.
44 All indentations will be at least two spaces

and be consistent within the same source
file.

Reports when a statement indentation is not
at least two spaces more than the statement
containing it. Does not report bad
indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will accept
any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

4 Coding Rule Sets and Concepts

4-66

N. JSF++ Definition Polyspace Specification
47 Identifiers will not begin with the

underscore character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the

letter 'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by the
presence/absence of the underscore
character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by a
mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
letter O, with the number 0.

50 The first word of the name of a class,
structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

Messages in report file:

• The first word of the name of a class will
begin with an uppercase letter.

• The first word of the namespace of a class
will begin with an uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

 JSF C++ Coding Rules

4-67

N. JSF++ Definition Polyspace Specification
51 All letters contained in function and

variables names will be composed entirely of
lowercase letters.

Messages in report file:

• All letters contained in variable names
will be composed entirely of lowercase
letters.

• All letters contained in function names
will be composed entirely of lowercase
letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or
".

54 Implementation files will always have a file
name extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with
more than two parameters, the leading
parenthesis and the first argument will be
written on the same line as the function
name. Each additional argument will be
written on a separate line (with the closing
parenthesis directly after the last argument).

Detects that two parameters are not on the
same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

4 Coding Rule Sets and Concepts

4-68

N. JSF++ Definition Polyspace Specification
59 The statements forming the body of an if,

else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body of an if
statement shall always be enclosed in
braces.

• The statements forming the body of an
else statement shall always be enclosed
in braces.

• The statements forming the body of a
while statement shall always be enclosed
in braces.

• The statements forming the body of a
do ... while statement shall always be
enclosed in braces.

• The statements forming the body of a for
statement shall always be enclosed in
braces.

60 Braces ("{}") which enclose a block will be
placed in the same column, on separate lines
directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

62 The dereference operator ‘*’ and the
address-of operator ‘&’ will be directly
connected with the type-specifier.

Reports when there is a space between type
and "*" "&" for variables, parameters and
fields declaration.

 JSF C++ Coding Rules

4-69

N. JSF++ Definition Polyspace Specification
63 Spaces will not be used around ‘.’ or ‘->’, nor

between unary operators and operands.
Reports when the following characters are
not directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note that a violation will be reported for “.”
used in float/double definition.

Classes

N. JSF++ Definition Polyspace Specification
67 Public and protected data should only be

used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

74 Initialization of nonstatic class members will
be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the
member initialization list.

4 Coding Rule Sets and Concepts

4-70

N. JSF++ Definition Polyspace Specification
75 Members of the initialization list shall be

listed in the order in which they are declared
in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy
assign

• no copy constructor
• no copy assign

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

77.1 The definition of a member function shall
not contain default arguments that produce
a signature identical to that of the implicitly-
declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called in
a constructor is greater than the number of
“delete” called in its destructor.

Note A violation is raised even if “new” is
done in a “if/else”.

 JSF C++ Coding Rules

4-71

N. JSF++ Definition Polyspace Specification
81 The assignment operator shall handle self-

assignment correctly
Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82 An assignment operator shall return a
reference to *this.

The following operators should return *this
on method, and *first_arg on plain
function.

operator=operator+=operator-
=operator*=operator >>=operator
<<=operator /=operator %=operator
|=operator &=operator ^=prefix
operator++ prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

4 Coding Rule Sets and Concepts

4-72

N. JSF++ Definition Polyspace Specification
88 Multiple inheritance shall only be allowed in

the following restricted form: n interfaces
plus m private implementations, plus at most
one protected implementation.

Messages in report file:

• Multiple inheritance on public
implementation shall not be allowed:
<public_base_class> is not an
interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not be
redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never
be redefined.

96 Arrays shall not be treated polymorphically. Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (==
or !=) shall be a pointer to a virtual member
function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

 JSF C++ Coding Rules

4-73

Namespaces

N. JSF++ Definition Polyspace Specification
98 Every nonlocal name, except main(),

should be placed in some namespace.
Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Specification
104 A template specialization shall be declared

before its use.
Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Specification
107 Functions shall always be declared at file

scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in
a class specification unless the function is
intended to be inlined.

Reports when "inline" is not in the definition
of a member function inside the class
definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions

shall be through return statements.

4 Coding Rule Sets and Concepts

4-74

N. JSF++ Definition Polyspace Specification
116 Small, concrete-type arguments (two or

three words in size) should be passed by
value if changes made to formal parameters
should not be reflected in the calling
function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not
be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software.

Message in report file:

Function <F> shall not call directly itself.
121 Only functions with 1 or 2 statements

should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Specification
126 Only valid C++ style comments (//) shall be

used.

133 Every source file will be documented with an
introductory comment that provides
information on the file name, its contents,
and any program-required information (e.g.
legal statements, copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the
source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Specification
135 Identifiers in an inner scope shall not use

the same name as an identifier in an outer
scope, and therefore hide that identifier.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

 JSF C++ Coding Rules

4-75

N. JSF++ Definition Polyspace Specification
136 Declarations should be at the smallest

feasible scope.
Reports when:

• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in the
same block) or is not used in two sub-
statements of its declaration.

Note

• Non-used variables are reported.
• Initializations at definition are ignored

(not considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in more
than one file.

Reports all duplicate declarations inside a
translation unit. Reports when the
declaration localization is not the same in
all translation units.

140 The register storage class specifier shall not
be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Specification
142 All variables shall be initialized before use. Done with Non-initialized variable checks in

the software.

4 Coding Rule Sets and Concepts

4-76

N. JSF++ Definition Polyspace Specification
144 Braces shall be used to indicate and match

the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

Types

N. JSF++ Definition Polyspace Specification
147 The underlying bit representations of

floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Specification
149 Octal constants (other than zero) shall not

be used.

150 Hexadecimal constants will be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
-const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

 JSF C++ Coding Rules

4-77

N. JSF++ Definition Polyspace Specification
151.1 A string literal shall not be modified. Report when a char*, char[], or string

type is used not as const.

A violation is raised if a string literal (for
example, “ “) is cast as a non const.

Variables

N. JSF++ Definition Polyspace Specification
152 Multiple variable declarations shall not be

allowed on the same line.

Unions and Bit Fields

N. JSF++ Definition Polyspace Specification
153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned

integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed fields
are not allowed).

Operators

N. JSF++ Definition Polyspace Specification
157 The right hand operand of a && or ||

operator shall not contain side effects.
Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator
shall not contain side effects.

• The right hand operand of a || operator
shall not contain side effects.

4 Coding Rule Sets and Concepts

4-78

N. JSF++ Definition Polyspace Specification
158 The operands of a logical && or || shall be

parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain
binary operators.

• The operands of a logical || shall be
parenthesized if the operands contain
binary operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be
overloaded.

• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

160 An assignment expression shall be used only
as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not be
mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator

shall lie between zero and one less than the
width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

 JSF C++ Coding Rules

4-79

Pointers and References

N. JSF++ Definition Polyspace Specification
169 Pointers to pointers should be avoided when

possible.
Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including one

past the end of the same array).

Reports when relational operator are used
on pointer types (casts ignored).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or

be assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type of
function, cast, and exception specification.

4 Coding Rule Sets and Concepts

4-80

Type Conversions

N. JSF++ Definition Polyspace Specification
177 User-defined conversion functions should be

avoided.
Reports user defined conversion function,
non-explicit constructor with one parameter
or default value for others (even undefined
ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as
"explicit".

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a
special case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

 JSF C++ Coding Rules

4-81

N. JSF++ Definition Polyspace Specification
180 Implicit conversions that may result in a loss

of information shall not be used.
Reports the following implicit casts :

integer => smaller integer
unsigned => smaller or eq signed
signed => smaller or eq un-signed
integer => float float => integer

Does not report for cast to bool reports for
implicit cast on constant done with the
option -scalar-overflows-checks
signed-and-unsigned

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts
to equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional C-
style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Specification
186 There shall be no unreachable code. Done with gray checks in the software.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

4 Coding Rule Sets and Concepts

4-82

N. JSF++ Definition Polyspace Specification
187 All non-null statements shall potentially

have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used

(except to terminate the cases of a switch
statement).

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

194 All switch statements that do not intend to
test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used as
loop counters.

Assumes 1 loop parameter.

198 The initialization expression in a for loop
will perform no actions other than to
initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a
single loop parameter to the next value for
the loop.

Assumes 1 loop parameter (Rule 198), with
non class type. Rule 200 must not be violated
for this rule to be reported.

 JSF C++ Coding Rules

4-83

N. JSF++ Definition Polyspace Specification
200 Null initialize or increment expressions in

for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a for
loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198), and
no alias writes.

Expressions

N. JSF++ Definition Polyspace Specification
202 Floating point variables shall not be tested

for exact equality or inequality.
Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall only
be used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a side-
effect in a function call

• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return
statement

• A side effect exists on a single value, and
only one operand of the function call has
a side effect.

4 Coding Rule Sets and Concepts

4-84

N. JSF++ Definition Polyspace Specification
204.1 The value of an expression shall be the same

under any order of evaluation that the
standard permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-
expressions

• Volatile variable is accessed more than
once

Note Read-write operations such as ++, are
only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Specification
206 Allocation/deallocation from/to the free store

(heap) shall not occur after initialization.
Reports calls to C library functions: malloc /
calloc / realloc / free and all new/
delete operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Specification
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and

throw.

Portable Code

N. JSF++ Definition Polyspace Specification
209 The basic types of int, short, long, float

and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these
type names used in the code.

Only allows use of basic types through direct
typedefs.

 JSF C++ Coding Rules

4-85

N. JSF++ Definition Polyspace Specification
213 No dependence shall be placed on C++’s

operator precedence rules, below arithmetic
operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is an
operation with inferior precedence level.

Reports bitwise and shifts operators that are
used without parenthesis and binary
operation arguments.

215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules
• “Code Size and Complexity” on page 4-87
• “Rules” on page 4-87
• “Environment” on page 4-87
• “Libraries” on page 4-88
• “Header Files” on page 4-88
• “Style” on page 4-88
• “Classes” on page 4-88
• “Namespaces” on page 4-90
• “Templates” on page 4-90
• “Functions” on page 4-91
• “Comments” on page 4-91
• “Initialization” on page 4-92
• “Types” on page 4-92
• “Unions and Bit Fields” on page 4-92
• “Operators” on page 4-92
• “Type Conversions” on page 4-92
• “Expressions” on page 4-93
• “Memory Allocation” on page 4-93
• “Portable Code” on page 4-93

4 Coding Rule Sets and Concepts

4-86

• “Efficiency Considerations” on page 4-94
• “Miscellaneous” on page 4-94
• “Testing” on page 4-94

Code Size and Complexity

N. JSF++ Definition
2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition
4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies with
an exception specified by that rule.

Environment

N. JSF++ Definition
10 Values of character types will be restricted to a defined and documented subset of ISO

10646 1.

 JSF C++ Coding Rules

4-87

Libraries

N. JSF++ Definition
16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-

critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition
34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to

successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition
45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides

declarations.
56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a
suffix should be appended to reflect a logical differentiation.

Classes

N. JSF++ Definition
64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.

4 Coding Rule Sets and Concepts

4-88

N. JSF++ Definition
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be

declared const. Member functions should be const by default. Only when there is a clear,
explicit reason should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not be

allowed until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible

operation.
73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a

data element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators

offer reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will

be defined in terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.
91 Public inheritance will be used to implement “is-a” relationships.

 JSF C++ Coding Rules

4-89

N. JSF++ Definition
92 A subtype (publicly derived classes) will conform to the following guidelines with respect to

all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base class
methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

Namespaces

N. JSF++ Definition
100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition
101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

4 Coding Rule Sets and Concepts

4-90

Functions

N. JSF++ Definition
112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the
value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of the
object.

118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics, share
the same name, have the same purpose, and that are differentiated by formal parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition
127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside

of the file being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions or

classes being documented.
130 The purpose of every line of executable code should be explained by a comment, although

one comment may describe more than one line of code.

 JSF C++ Coding Rules

4-91

N. JSF++ Definition
131 One should avoid stating in comments what is better stated in code (i.e. do not simply

repeat what is in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be

commented.
134 Assumptions (limitations) made by functions should be documented in the function’s

preamble.

Initialization

N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values. (See

also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope, initialization
before use, and default constructors respectively.)

Types

N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined,

documented and taken into account.

Type Conversions

N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.

4 Coding Rule Sets and Concepts

4-92

Expressions

N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition
207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory

(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic data
members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at
particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a

special order shall not be done.

 JSF C++ Coding Rules

4-93

Efficiency Considerations

N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition
217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition
219 All tests applied to a base class interface shall be applied to all derived class interfaces as

well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions

shall include testing every possible resolution for each set of identical polymorphic
references.

4 Coding Rule Sets and Concepts

4-94

Approximations Used During Bug
Finder Analysis

5

Inputs in Polyspace Bug Finder
A Bug Finder analysis does not return a defect caused by a special value of an unknown
input, unless the input is bounded. Polyspace makes no assumption about the value of
unbounded inputs when your source code is incomplete. For example, in the following
code Bug Finder detects a division by zero in foo_1(), but not in foo_2():

int foo_1(int p)
{
 int x = 0;
 if (p > -10 && p < 10) /* p is bounded by if statement */
 x = 100/p; /* Division by zero detected */

 return x;
}

int foo_2(int p) /* p is unbounded */
{
 int x = 0;
 x = 100/p; /* Division by zero not detected */

 return x;
}

Note To set bounds on your input, add constraints in your code such as assert or if.

See Also
“Global Variables in Polyspace Bug Finder” on page 5-3 | “Bug Finder Analysis
Assumptions”

5 Approximations Used During Bug Finder Analysis

5-2

Global Variables in Polyspace Bug Finder
When you run a Bug Finder analysis, Polyspace makes certain assumptions about the
initialization of global variables. These assumptions depend on how you declare and
define global variables. For example, in this code

int foo(void) {
 return 1/gvar;
}

Bug Finder detects a division by zero defect with the variable gvar in these cases:

• You define int gvar; in the source code and provide a main function that calls foo.
Bug Finder follows ANSI standards that state the variable is initialized to zero.

• You define int gvar; or declare extern int gvar; in the source code. Another
function calls foo and sets gvar=0. Otherwise, when your source files are incomplete
and do not contain a main function, Bug Finder makes no assumption about the
initialization of gvar.

• You declare const int gvar;. Bug Finder assumes gvar is initialized to zero due to
the const keyword.

See Also
“Inputs in Polyspace Bug Finder” on page 5-2 | “Bug Finder Analysis Assumptions”

 Global Variables in Polyspace Bug Finder

5-3

